Model averaging and variable selection methods for causal models
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
This doctoral dissertation comprises four papers. The aims of this dissertation are twofold: first, it introduces model averaging methods that use weights inversely proportional to the Hausman test statistic; second, it explores variable selection methods for estimating causal effects by identifying both valid and invalid instruments. Each paper assesses the performance of these novel methods by developing theoretical asymptotic properties, conducting Monte Carlo simulations, and applying them empirically.
The first paper focuses on the use of instrumental variable estimation methods regression with many instruments in the linear model. A weighted average approach is introduced by combining least squares and limited information maximum likelihood estimators.
The second paper addresses the issue of endogeneity in the instrumental variable probit model by developing a Stein weighted average control function maximum likelihood estimator. The asymptotic distribution and asymptotic risk of the proposed estimator are derived.
The third paper focuses on the use of Lasso instrumental variables estimation methods. In addition, the jackknife instrumental variable approach is introduced using the Lasso procedure. The proposed methods are robust for estimating causal effects in the presence of both invalid and valid instruments. Additionally, for convenience, we created an R package for implementing the proposed methods.
The fourth paper introduces the best subset instrumental estimator via mixed integer optimization to estimate causal effects and select invalid instruments. It is shown that the best subset instrumental variable estimator outperforms the two-stage least squares, Lasso-type instrumental variables methods, and two-sample analysis methods.
Abstract [sv]
Denna doktorsavhandling består av fyra artiklar. Avhandlingens syften är tvåfaldiga: för det första introduceras metoder som tar ett genomsnitt baserat på vikter som är proportionella till inversen av ett Hausman-test; för det andra undersöks metoder för val av variabler för att skatta kausala effekter genom att identifiera både giltiga och ogiltiga instrumentvariabler. Varje artikel utvärderar prestationsförmågan hos de nya metoderna genom att härleda teoretiska asymptotiska egenskaper, genom Monte Carlo-simuleringar samt genom empiriska tillämpningar.
Den första artikeln fokuserar på skattningsmetoder för linjära regressionsmodeller med instrumentvariabler som inkluderar många instrument. En metod baserat på ett viktat genomsnitt introduceras genom att kombinera minsta kvadratmetoden och s.k. limited information maximum likelihood-skattning.
Den andra artikeln adresserar problemet med endogenitet i probitmodeller med instrumentvariabler genom att utveckla en viktad Stein-estimator som inkluderar en kontrollfunktionsskattning genom maximum likelihood. Den asymptotiska fördelningen och asymptotiska risken för den föreslagna skattningsmetoden härleds.
Den tredje artikeln fokuserar på användningen av Lasso-metoder för att skatta instrumentvariabelmodeller. Dessutom introduceras en jackknife-baserad metod för att skatta instrumentvariabelmodeller med hjälp av Lasso. De föreslagna metoderna är robusta när man ska skatta kausala effekter genom modeller som innehåller många ogiltiga och giltiga instrumentvariabler.
Den fjärde artikeln introducerar val av instrumentvariabler genom modellvalssmetoden best subset via mixed integer-optimering för att skatta kausala effekter samt för att välja ogiltiga instrumentvariabler. Resultaten visar att den nya metoden är överlägsen flera tidigare utvecklade metoder.
Place, publisher, year, edition, pages
Jönköping: Jönköping University, Jönköping International Business School , 2024. , p. 29
Series
JIBS Dissertation Series, ISSN 1403-0470 ; 167
National Category
Probability Theory and Statistics
Identifiers
URN: urn:nbn:se:hj:diva-66497ISBN: 978-91-7914-048-9 (print)ISBN: 978-91-7914-049-6 (electronic)OAI: oai:DiVA.org:hj-66497DiVA, id: diva2:1909240
Public defence
2024-12-02, B1014, Jönköping International Business School, Jönköping, 13:15 (English)
Opponent
Supervisors
2024-10-302024-10-302024-10-30Bibliographically approved
List of papers