Shrinkage estimation methods for mixed data sampling regression and heterogeneous autoregressive models
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
This thesis consists of four research articles. The first two articles assess the effectiveness of various shrinkage estimation methods within mixed data sampling (MIDAS) regression models and find that our proposed methods have superior performance compared to existing models. The third article extends MIDAS models to encompass count data, and the fourth article evaluates the performance of a specific proposed shrinkage method in forecasting stock price volatility.
In the first article, which focuses on MIDAS regression in a nonparametric way, two-parameter nonparametric shrinkage estimation methods are developed to estimate the MIDAS regression parameters. The proposed methodology is compared with one-parameter nonparametric and parametric MIDAS regression, both theoretically via simulation and practically in terms of forecasting U.S. inflation rates. The proposed two-parameter estimator outperforms the one-parameter estimator and other comparative methods, both theoretically and empirically.
In the second article, the two-dimensional panel data regression model is extended to a multidimensional context for mixed-frequency data. We use the least absolute shrinkage and selection operator (LASSO), sparse group (sg)-LASSO, and elastic net unrestricted MIDAS (U-MIDAS) for estimation. The theoretical properties of the extended models are evaluated using Monte Carlo simulations. The proposed model is empirically applied to now cast three-dimensional home ownership vacancy rates across states, metropolitan statistical areas (MSAs), and time in the U.S. Finally, we compare the predictive performance of this extended model with the traditional three-dimensional panel data regression model. The extended model demonstrates superior performance over traditional multidimensional methods, both theoretically and empirically.
The third article introduces a generalized Poisson regression model for count time series data, applied within a MIDAS framework. The new MIDAS Poisson regression model (MIDAS-PRM) is used to forecast the monthly dengue counts from high-frequency environmental parameters and Google Trends data.
Forecasts are generated using a rolling window forecast scheme and forecast combinations. We conclude that the proposed MIDAS-PRM significantly enhances predictive performance compared to the standard time series PRM and other benchmark time series models.
The fourth article proposes two-parameter ridge shrinkage estimation methods to estimate the realized volatility (RV) of the heterogeneous autoregressive (HAR) model. The proposed estimator, which is notable for its orthogonality properties, is employed to forecast the RV of stock prices. The proposed estimator is evaluated through simulations and empirical applications, demonstrating superior performance both theoretically and empirically compared to traditional methods.
Abstract [sv]
Denna doktorsavhandling består av fyra forskningsartiklar. De två första artiklarna utvärderar effektiviteten för olika krympningsmetoder inom mixed data sampling (MIDAS). De föreslagna modellerna presterar bättre än modeller från tidigare forskning. Den tredje artikeln utvidgar MIDAS-modellerna till att omfatta så kallade ”count variables”, medan den fjärde artikeln utvärderar vår föreslagna krympningsmetod för att prognostisera aktiekursvolatilitet. I den första artikeln utvecklas icke-parametriska krympningsmetoder med två parametrar för att estimera MIDAS-modellen.
Den föreslagna metodologin jämförs med konventionella en-parameterbaserade icke-parametriska och parametriska MIDAS-regressionsmodeller. Detta görs både genom teoretiska simuleringar och praktiska tillämpningar vid prognostisering av amerikanska inflationsdata. Den föreslagna två-parameterestimatorn överträffar en-parameterestimatorn och andra traditionella metoder, både teoretiskt och empiriskt.
I den andra artikeln utökar vi den tvådimensionella paneldatamodellen till en multidimensionell kontext för data med blandade datafrekvenser. Vi använder least absolute shrinkage and selection operator (LASSO), sparse group (sg)-LASSO och elastic net unrestricted MIDAS (U-MIDAS) vid estimationen. Dessutom utvärderar vi de teoretiska egenskaperna hos de utökade modellerna genom Monte Carlo-simulering. Sedan använder vi den föreslagna modellen för att utföra tredimensionella nulägesprognoser (nowcasting) för vakanser av äganderätter för olika stater, storstadsområden (metropolitan statistical areas) och över tid i USA. Slutligen jämför vi prediktionsförmågan hos denna utökade modell med den traditionella tredimensionella paneldatamodellen. Resultaten påvisar att den utökade modellen presterar bättre än de traditionella multidimensionella metoderna, både från ett teoretiskt och empiriskt perspektiv.
Den tredje artikeln introducerar en generaliserad Poisson-regression för s.k. count data” som tillämpas inom en MIDAS-kontext. Den nya MIDAS Poisson-modellen (MIDAS-PRM) används för att prognostisera månatliga fall av denguefeber baserat på högfrekventa miljöparametrar och Google Trends-data.
Prognoserna genereras med hjälp av ett rullande fönster och kombinationer av olika prognosmodeller. Artikeln konkluderar att den föreslagna MIDAS-PRM förbättrar de prediktiva egenskaperna jämfört med traditionell tidsserie-PRM och andra benchmarkmodeller.
I den fjärde artikeln föreslås ridge-krympningsmetoder med två parametrar i syfte att estimera den realiserade volatiliteten (RV) genom en heterogen autoregressiv (HAR) modell. Den föreslagna estimatorn, känd för sina goda ortogonalitetsegenskaper, används för att prognostisera realiserad volatilitet för aktiekurser. Både empiriskt och teoretiskt presterar den föreslagna estimatorn bättre än de alternativa estimatorerna, vilket påvisas genom simuleringar och empiriska tillämpningar.
Place, publisher, year, edition, pages
Jönköping: Jönköping University, Jönköping International Business School , 2024. , p. 29
Series
JIBS Dissertation Series, ISSN 1403-0470 ; 165
National Category
Probability Theory and Statistics
Identifiers
URN: urn:nbn:se:hj:diva-65985ISBN: 978-91-7914-044-1 (print)ISBN: 978-91-7914-045-8 (electronic)OAI: oai:DiVA.org:hj-65985DiVA, id: diva2:1890050
Public defence
2024-09-13, B1014, Jönköping International Business School, Jönköping, 10:00 (English)
Opponent
Supervisors
2024-08-192024-08-192024-08-19Bibliographically approved
List of papers