Endre søk
Begrens søket
12 51 - 55 of 55
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 51.
    Sujakhu, S.
    et al.
    School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.
    Castagne, S.
    School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.
    Sakaguchi, M.
    Department of Mechanical Engineering, Tokyo Institute of Technology, Tokyo, Japan.
    Kasvayee, Keivan Amiri
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Material och tillverkning.
    Ghassemali, Ehsan
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Material och tillverkning.
    Jarfors, Anders E.W.
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Material och tillverkning.
    Wang, W.
    Advance Remanufacturing and Technology Centre, Singapore.
    On the fatigue damage micromechanisms in Si-solution-strengthened spheroidal graphite cast iron2018Inngår i: Fatigue & Fracture of Engineering Materials & Structures, ISSN 8756-758X, E-ISSN 1460-2695, Vol. 41, nr 3, s. 625-641Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Graphite nodules in spheroidal graphite cast iron (SGI) play a vital role in fatigue crack initiation and propagation. Graphite nodules growth morphology can go through transitions to form degenerated graphite elements other than spheroidal graphite nodules in SGI microstructure. These graphite particles significantly influence damage micromechanisms in SGI and could act differently than spheroidal graphite nodules. Most of the damage mechanism studies on SGI focused on the role of spheroidal graphite nodules on the stable crack propagation region. The role of degenerated graphite elements on SGI damage mechanisms has not been frequently studied. In this work, fatigue crack initiation and propagation tests were conducted on EN-GJS-500-14 and observed under scanning electron microscope to understand the damage mechanisms for different graphite shapes. Crack initiation tests showed a dominant influence of degenerated graphite elements where early cracks initiated in the microstructure. Most of the spheroidal graphite nodules were unaffected at the early crack initiation stage, but few of them showed decohesion from the ferrite matrix and internal cracking. In the crack propagation region, graphite/ferrite matrix decohesion was the frequent damage mechanism observed with noticeable crack branching around graphite nodules and the crack passing through degenerated graphite elements. Finally, graphite nodules after decohesion acted like voids which grew and coalesced to form microcracks eventually causing rapid fracture of the remaining section.

    Fulltekst (pdf)
    fulltext
  • 52.
    Svidró, József Tamás
    et al.
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Material och tillverkning.
    Seifeddine, Salem
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Material och tillverkning.
    Ghassemali, Ehsan
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Material och tillverkning.
    Innovation in knowledge transfer from academia to the foundry industry - An advanced case2018Inngår i: 73rd World Foundry Congress "Creative Foundry", WFC 2018 - Proceedings, Stowarzyszenie Techniczne Odlewnikow Polskich/Polish Foundrymen's Association , 2018, s. 633-633Konferansepaper (Fagfellevurdert)
  • 53.
    Vahiddastjerdi, H.
    et al.
    Department of Materials Engineering, Isfahan University of Technology (IUT), Isfahan, Iran.
    Rezaeian, A.
    Department of Materials Engineering, Isfahan University of Technology (IUT), Isfahan, Iran.
    Toroghinejad, M. R.
    Department of Materials Engineering, Isfahan University of Technology (IUT), Isfahan, Iran.
    Dini, G.
    Department of Nanotechnology Engineering, Faculty of Advanced Sciences and Technologies University of Isfahan, Isfahan, Iran.
    Ghassemali, Ehsan
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Material och tillverkning.
    Optimizing pulsed Nd: YAG laser welding of high-Mn TWIP steel using response surface methodology technique2019Inngår i: Optics and Laser Technology, ISSN 0030-3992, E-ISSN 1879-2545, Vol. 120, artikkel-id 105721Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In the present study, the microstructural and mechanical properties of laser beam-welded thin sheet twinning-induced plasticity (TWIP) steel were investigated. The pulsed neodymium: yttrium-aluminum-garnet (Nd: YAG) laser beam welding process parameters were modeled and optimized based on experimental data and statistical analysis using response surface methodology (RSM) technique. Process parameters range, i.e. the power input (2000–3000 W), welding speed (0.2–1 mm/min), and spot size (0.3–0.7 mm) were selected properly in order to obtain the desired mechanical properties. Main effects of each factor along with interaction effect with other factors were determined quantitatively. The predicted and actual values of the mechanical properties compared using analysis of variance (ANOVA) in order to verify the adequacy of the developed model. Optimal laser beam welding parameters were identified as the power input, welding speed and spot size of 2586 W, 0.53 mm/min, and 0.48 mm, respectively. Using parameters in the optimal conditions, a welding joint with tensile load of 2001 N (% 94 strength of the base metal) was obtained. In addition, the welding zone with an average grain size coarser than the one for the base metal and a random texture was identified.

  • 54.
    Wójcik, N. A.
    et al.
    Linnaeus University, Växjö, Sweden and Gdańsk University of Technology, Gdańsk, Poland.
    Jonson, B.
    Linnaeus University, Växjö, Sweden.
    Möncke, D.
    Linnaeus University, Växjö, Sweden and Theoretical and Physical Chemistry Institute, Athens, Greece.
    Palles, D.
    Theoretical and Physical Chemistry Institute, Athens, Greece.
    Kamitsos, E. I.
    Theoretical and Physical Chemistry Institute, Athens, Greece.
    Ghassemali, Ehsan
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Material och tillverkning.
    Seifeddine, Salem
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Material och tillverkning.
    Eriksson, Mirva
    Stockholm University, Stockholm, Sweden.
    Ali, Sharafat
    Linnaeus University, Växjö, Sweden.
    Influence of synthesis conditions on glass formation, structure and thermal properties in the Na2O-CaO-P2O5 system doped with Si3N4 and Mg2018Inngår i: Journal of Non-Crystalline Solids, ISSN 0022-3093, E-ISSN 1873-4812, Vol. 494, s. 66-77Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Oxynitride phosphate glasses and glass-ceramics were prepared using new synthesis routes for phosphate glasses. Materials were melted from pre-prepared glass samples in the system Na-Ca-P-O with addition of Mg and/or Si3N4 powders under different preparation conditions. The melting process was conducted at 1000–1500 °C either under air or nitrogen atmosphere to obtain materials with different nitrogen content. Their topography and structure were characterized by Confocal Microscopy, Scanning Electron Microscopy, X-ray powder diffraction and Raman and infrared spectroscopy techniques, while their chemical compositions were examined by Energy Dispersive X-ray spectroscopy (EDS). All materials prepared under nitrogen atmosphere were found to contain a relative low quantity of nitrogen and high amount of Nb leached from the crucible. The reaction with the Nb crucible was not previously observed for silicon-based oxynitride glasses. The synthesized materials form two groups: glasses and glass-ceramics. The first ones, were prepared under air and nitrogen atmospheres at temperatures up to 1400 °C, and were found to be amorphous and homogeneous. Raman and infrared spectroscopy measurements confirm the presence of amorphous phosphates in the synthesized materials. The samples of the second group were prepared at temperatures above 1400 °C and were found to be translucent and partially crystallized. They contain nanocrystallites of calcium and sodium phosphates including hydroxyapatite (HAp). The thermal properties of samples were studied by Differential Scanning Calorimetry (DSC). The obtained glass transition temperatures range from about 360 °C to 640 °C and exhibit high values for glass-ceramic materials. Stability is improved in the studied glass-ceramics because of the increased degree of network polymerization of the remaining glassy matrix. The approximate fragility index decreases two times for oxynitride materials compared to the primary glass. The synthesized new materials may be competitive to well-known bioactive phosphate glasses thanks to their improved stability by Mg, Si, N and Nb doping.

  • 55.
    Zamani, Mohammadreza
    et al.
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Material och tillverkning.
    Seifeddine, Salem
    Högskolan i Jönköping, Tekniska Högskolan, JTH. Forskningsmiljö Material och tillverkning – Gjutning.
    Ghassemali, Ehsan
    Högskolan i Jönköping, Tekniska Högskolan, JTH. Forskningsmiljö Material och tillverkning – Gjutning.
    Effect of cooling rate and eutectic modification on texture and grain structure of Al-Si-Cu-Mg die cast alloy2016Inngår i: La Metallurgia Italiana, ISSN 0026-0843, Vol. 108, nr 6, s. 5-8Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The effect of cooling rate and eutectic modification on texture evolution and grain structure of an Al-Si-Cu-Mg die cast alloy were investigated using optical microscopy (OM) and electron backscatter diffraction (EBSD) techniques. Directional solidification technique was utilized to produce as-cast specimens having low level of casting defects with controlled microstructural scale: specimens with average SDAS of 10 and 25 µm. Mode of solidification, cooling rate and eutectic modification did not induce any significant texture in the microstructure. An increase in cooling rate resulted in reduction grain size. High degree of grains orientation randomness was found in high cooling rate regardless of modification treatment.

    Fulltekst (pdf)
    fulltext
12 51 - 55 of 55
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf