Change search
Refine search result
1 - 14 of 14
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Björklund, Camilla
    et al.
    University of Gothenburg, Sweden.
    Alkhede, Maria
    University of Gothenburg, Sweden.
    Kullberg, Angelika
    University of Gothenburg, Sweden.
    Reis, Maria
    University of Gothenburg, Sweden.
    Marton, Ference
    University of Gothenburg, Sweden.
    Ekdahl, Anna-Lena
    Jönköping University, School of Education and Communication, HLK, Praktiknära utbildningsforskning (PUF), Mathematics Education Research.
    Runesson Kempe, Ulla
    Jönköping University, School of Education and Communication, HLK, Praktiknära utbildningsforskning (PUF), Mathematics Education Research.
    Teaching finger patterns for arithmetic development to preschoolers2018Conference paper (Refereed)
    Abstract [en]

    In this paper we describe the empirical and theoretical meaning behind how finger patterns are taught to facilitate the development of preschool children’s perception of the first ten natural numbers. An intervention programme, informed by Variation theory of learning, included 65 five-year-olds and teachers at seven preschool departments in Sweden. The programme aimed at developing teaching activities and artefacts to promote children discerning necessary aspects of the first ten numbers. The design of the programme is significant to describe and evaluate as basis for forthcoming analyses of the learning outcomes, as a pedagogical approach that stands in contrast to common preschool teaching practice in Sweden is adopted.

  • 2.
    Ekdahl, Anna-Lena
    Jönköping University, School of Education and Communication, HLK, Praktiknära utbildningsforskning (PUF), Mathematics Education Research.
    Differences in pre-school teachers' ways of handling a part-part-whole activity2018Conference paper (Refereed)
    Abstract [en]

    The data in this paper draws from an eight-month intervention study based on the idea that children need to discern the first ten natural numbers as relations of parts and whole to develop their arithmetic skills. In order to implement educational activities according to this conjecture, a group of Swedish preschool teachers worked closely with a research team, planning, enacting and analyzing activities. In this paper I describe how nine pre-school teachers, across 67 video-recorded films, handled one of these activities, called the ‘snake game’ with their groups of 5-year-old children. Using analysis based on variation theory, the results point to differences in the enactment of the ‘snakegame’ in terms of if and how the teachers foregrounded the structural aspects of numbers embedded in the activity.

  • 3.
    Ekdahl, Anna-Lena
    Jönköping University, School of Education and Communication, HLK, School Based Research, Mathematics Education Research.
    Grade 3 and 4 students' different ways of discerning Mathematical patterns2013In: Proceedings of the 37th Conference of the International Group for the Psychology of Mathematics Education: Vol.5 (p.224). Kiel, Germany:PME / [ed] Lindmeier, A. M. & Heinze, A. (Eds.), 2013, p. 224-Conference paper (Refereed)
  • 4.
    Ekdahl, Anna-Lena
    Jönköping University, School of Education and Communication, HLK, Disciplinary Research.
    Önskas: intresse för matematik: En fenomenografisk studie av lärares beskrivning av hur de gör för att bibehålla elevernas intresse för matematik2007In: Forskande lärare i praktiken: Vol. 2, Jönköping: Högskolan för lärande och kommunikation , 2007, p. 9-61Chapter in book (Other academic)
  • 5.
    Ekdahl, Anna-Lena
    et al.
    Jönköping University, School of Education and Communication, HLK, Praktiknära utbildningsforskning (PUF), Mathematics Education Research.
    Björklund, C.
    Runesson Kempe, Ulla
    Jönköping University, School of Education and Communication, HLK, Praktiknära utbildningsforskning (PUF), Mathematics Education Research.
    Finger Patterns as means to experience numbers' part-part-whole relations2018In: Proceedings of the 42nd Conference of the International Group for Psychology of Mathematics education / [ed] E. Bergqvist, M. Österholm, C. Granberg & L. Sumpter, Umeå: PME , 2018, Vol. 5, p. 42-42Conference paper (Other academic)
  • 6.
    Ekdahl, Anna-Lena
    et al.
    Jönköping University, School of Education and Communication, HLK, Praktiknära utbildningsforskning (PUF), Mathematics Education Research.
    Björklund, Camilla
    Göteborgs universitet.
    ”10-masken” och förskolebarns lärande i målstyrda processer2018Conference paper (Other (popular science, discussion, etc.))
    Abstract [sv]

    I forskningsprojektet FASETT (VR-UVK 2014-1791) undersöker vi 5-åringars taluppfattning och aritmetikfärdigheter och möjligheterna att genom målorienterade processer stötta barn i att utveckla framgångsrika strategier för aritmetisk problemlösning. I två kommuner har vi tillsammans med förskollärare prövat ut aktiviteter i syfte att utveckla särskilda förmågor som förmodas vara nödvändiga för framgångsrik problemlösning i aritmetik, såsom att urskilja tals del-helhets-struktur, fingertal samt representationer av tal. Barnens (N= 65) taluppfattning och hur deras förskollärare arbetat med förmågorna på ett systematiskt sätt presenteras i föreläsningen, med tyngdpunkt på vad som görs möjligt att lära i aktiviteterna och effekter för barnens utveckling av talförståelse och aritmetikfärdigheter. Aktiviteter som prövats ut i projektet är teoretiskt grundade i Variationsteorin (Marton, 2015). I projektet uppmuntrar vi användning av fingrarna som redskap för att strukturera tal och operera med tal. Flera av aktiviteterna påminner om bekanta lekar och spel från förskolan, till exempel tärningsspel, ”10-masken” och enklare räknesagor. I föreläsningen presenterar vi en fördjupad analys av aktiviteten ”10-masken”, hur förskollärarna iscensatt aktiviteten på olika sätt och vilken betydelse det har haft för barnens lärandemöjligheter. ”10-masken” består av ett snöre med tio pärlor, där ett antal pärlor göms i handen och resten förblir synliga. Uppgiften är att ta reda på hur många pärlor som är gömda. Detta är inte en ny aktivitet i förskolan. Däremot, indikerar vår analys, spelar det roll hur en aktivitet med så många matematiska idéer introduceras och tas om hand av förskolläraren i mötet med barnen. Baserat på resultatet kan vi se att ”10-masken” erbjuder en potential av viktiga matematiska idéer, som är av stor pedagogisk betydelse för barns matematiklärande, men det spelar en avgörande roll hur förskolläraren gör i aktiviteten.

  • 7.
    Ekdahl, Anna-Lena
    et al.
    Jönköping University, School of Education and Communication, HLK, Praktiknära utbildningsforskning (PUF), Mathematics Education Research. Wits School of Education, University of the Witwatersrand, Johannesburg, South Africa.
    Björklund, Camilla
    University of Gothenburg, Sweden.
    Runesson Kempe, Ulla
    Jönköping University, School of Education and Communication, HLK, Praktiknära utbildningsforskning (PUF), Mathematics Education Research. Wits School of Education, University of the Witwatersrand, Johannesburg, South Africa.
    Teaching to change ways of experiencing numbers – An intervention program for arithmetic learning in preschool2019In: Proceedings of the 43rd Annual Meeting of the International Group for the Psychology of Mathematics Education: Volume 2: Research Reports (A-K) / [ed] Mellony Graven, Hamsa Venkat, Anthony A. Essien & Pamela Vale, Pretoria, South Africa: PME , 2019, p. 209-216Conference paper (Refereed)
    Abstract [en]

    This paper reports on an eight months long intervention program with eight five-year-olds in Swedish preschool. Four main activities were designed to enable the children to discern part-part-whole relations of the first ten numbers. The aim of this paper is to present how progress in children’s arithmetical skills are associated with the activities they have encountered in the intervention program. Learning outcomes based on pre-, post- and delayed interviews show that the participating children made distinct progress in the way they experience numbers, with long-term effects on their arithmetic skills. In this paper we discuss the analysis of what was taught and what was learnt incommensurable terms.

  • 8.
    Ekdahl, Anna-Lena
    et al.
    Jönköping University, School of Education and Communication, HLK, Praktiknära utbildningsforskning (PUF), Mathematics Education Research.
    Kullberg, Angelika
    University of Gothenburg, Sweden.
    Different learning possibilities in preschool mathematics from the same task2018Conference paper (Refereed)
    Abstract [en]

    In this paper one specific task in a series of tasks focusing on part-part-whole relations of the ten first natural numbers and finger patterns for structure number relations, is presented and discussed. The tasks were designed, planned and enacted in an intervention program conducted in Swedish preschool during an eight-month period. In the program nine preschool teachers worked in close collaboration with the research team in planning how to enact tasks with their 5-year-old children, in an iterative process. The specific task, called the ‘snake game’, consists of five or ten beads on a string, some of the beads where to be hidden and the children would find out the hidden part by using structured finger patterns. The task was designed in accordance with the variation theory assumptions that certain aspects need to be discerned as dimensions of variations. The aim of the paper is to examine which dimensions of variations that were opened up by the teachers and what was made possible for the children to learn from the enactment of the ‘snake game task’. The data set includes 67 video observations from the teacher’s enactment of the task. The results suggest that what seems to be a ‘non-complex task’ (five/ ten beads on a string) offers rich mathematical experiences and has potential to bring fore important aspects of numbers and number relations. However, depending on which dimensions of variations that were opened up reveals different learning possibilities.

  • 9.
    Ekdahl, Anna-Lena
    et al.
    Jönköping University, School of Education and Communication, HLK, Praktiknära utbildningsforskning (PUF), Mathematics Education Research.
    Lindgren, Helen
    Högskolan i Borås.
    Gemensamt fokus på förskolebarns taluppfattning och aritmetiska förmågor: Ett samverkansprojekt där teori och praktik flätas samman2018Conference paper (Refereed)
    Abstract [sv]

    I forskningsprojektet FASETT[1] flätas teori och praktik samman. Projektet syftar till att generera kunskap om barns tidiga taluppfattning, utifrån delvis andra perspektiv än de dominerande inom fältet, och se hur en pedagogisk verksamhet i samverkan med forskare kan bidra till barns utveckling av aritmetikfärdigheter.

    I projektet arbetade nio förskollärare och 65 femåringar på fem förskolenheter i ett tätt samarbete med en grupp forskare under en åttamånadersperiod. Deltagarna träffades kontinuerligt, diskuterade och fördjupade sig i aritmetiken med fokus på aktiviteter gällande de tio första talens del-del-helhetsrelationer. Aktiviteterna var till viss del välkända, men bearbetade utifrån tidigare forskningsresultat och variationsteorin (Neuman, 1987; Marton, 2015). Utgångspunkten och reflektionerna vid gruppträffarna var intervjuer av barnens olika sätt att uppfatta tal och lösa enklare aritmetikproblem samt lärarnas iscensättande av de planerade aktiviteterna. Genom att gemensamt diskutera de filmade aktiviteterna kunde aktiviteterna förfinas och förskollärarnas didaktik utvecklas för att möta barnens behov. 

    Pågående analyser visar att designen av projektet möjliggjort för förskollärare och forskare att i kollaboration implementera ett alternativt teoretiskt underbyggt sätt att utveckla barns taluppfattning och förmåga att   lösa enklare aritmetikproblem genom att exempelvis använda sig av fingrarna som redskap för att strukturera talrelationer och inte enbart räkna ’ett till ett’.

    Analysen av de barnintervjuer som gjordes innan aktiviteterna introduceras och de barnintervjuer som gjordes efter forskningsprojektets slut visar att förskollärarnas målorienterade processer med största sannolikhet haft effekter på barnens aritmetiska förmågor. De preliminära resultaten indikerar att valet av att fokusera på ett fåtal aktiviteter möjliggjorde för en djupare reflektion kring teoretiska antaganden och vad barn behöver få syn på för att lära sig om tal och talrelationer.

    [1] ”Förmågan Att Sinnligt Erfara de Tio första Talen som nödvändig grund för aritmetiska färdigheter”, finansierat av Vetenskapsrådet 2015-2018

  • 10.
    Ekdahl, Anna-Lena
    et al.
    Jönköping University, School of Education and Communication, HLK, School Based Research, Mathematics Education Research.
    Runesson, Ulla
    Jönköping University, School of Education and Communication, HLK, School Based Research, Mathematics Education Research.
    Teachers’ responses to incorrect answers on missing number problems in South Africa2015In: The twenty-third ICMI Study: Primary mathematics study on whole numbers: Proceedings / [ed] Xuhua Sun, Berinderjeet Kaur and Jarmila Novotná, 2015, p. 431-439Conference paper (Refereed)
    Abstract [en]

    This paper examines differences in how three Grade 3 South African teachers responded to students’ incorrect answers in whole class teaching of the part-whole relationship in additive missing number problems. Nine video recorded lessons, taught by three teachers, were analysed, with attention paid to teaching episodes containing incorrect students’ answers. The variation theoretical analyses indicated differences in the ways teachers responded to incorrect answers. We argue that different ways of responding to incorrect answers may provide different learning possibilities.

  • 11.
    Ekdahl, Anna-Lena
    et al.
    Jönköping University, School of Education and Communication, HLK, Praktiknära utbildningsforskning (PUF), Mathematics Education Research. Wits School of Education, University of the Witwatersrand, South Africa.
    Venkat, Hamsa
    Jönköping University, School of Education and Communication, HLK, Praktiknära utbildningsforskning (PUF), Mathematics Education Research. Wits School of Education, University of the Witwatersrand, South Africa.
    Runesson Kempe, Ulla
    Jönköping University, School of Education and Communication, HLK, Praktiknära utbildningsforskning (PUF), Mathematics Education Research. Wits School of Education, University of the Witwatersrand, South Africa.
    Askew, Mike
    Wits School of Education, University of the Witwatersrand, South Africa.
    Weaving in connections: Studying changes in early grades additive relations teaching2018In: South African Journal of Childhood Education, ISSN 2223-7674, E-ISSN 2223-7682, Vol. 8, no 1, article id a540Article in journal (Refereed)
    Abstract [en]

    In this article, we present aspects of teaching that draw attention to connections – both within and between examples – in order to explore the potential objects of learning that are brought into being in the classroom space and thus what is made available to learn. Our focus is on exploring differences in teaching over time, in the context of learning study style development activity of additive relation problems in three Grade 3 classes in South Africa. In a context where highly-localised and fragmented instruction has been noted, this study reports on the nature and extent of changes in connections in instruction over time. The application of a coding framework focused on simultaneity and connections in teaching points to a richer range of structural relationships within examples, and more connecting work between examples in the second year in comparison to the first year.

  • 12.
    Ekdahl, Anna-Lena
    et al.
    Jönköping University, School of Education and Communication, HLK, School Based Research, Mathematics Education Research.
    Venkat, Hamsa
    Jönköping University, School of Education and Communication. University of Witwatersrand, Johannesburg, South Africa.
    Runesson, Ulla
    Jönköping University, School of Education and Communication, HLK, School Based Research, Mathematics Education Research.
    Coding teaching for simultaneity and connections: Examining teachers’ part-whole additive relations instruction2016In: Educational Studies in Mathematics, ISSN 0013-1954, E-ISSN 1573-0816, Vol. 93, no 3, p. 293-313Article in journal (Refereed)
    Abstract [en]

    In this article, we present a coding framework based on simultaneity and connections. The coding focuses on microlevel attention to three aspects of simultaneity and connections: between representations, within examples, and between examples. Criteria for coding that we viewed as mathematically important within part-whole additive relations instruction were developed. Teachers’ use of multiple representations within an example, attention to part-whole relations within examples, and relations between multiple examples were identified, with teachers’ linking actions in speech or gestures pointing to connections between these. In this article, the coding framework is detailed and exemplified in the context of a structural approach to part-whole teaching in six South African grade 3 lessons. The coding framework enabled us to see fine-grained differences in teachers’ handling of part-whole relations related to simultaneity of, and connections between, representations and examples as well as within examples. We went on to explore the associations between the simultaneity and connections seen through the coding framework in sections of teaching and students’ responses on worksheets following each teaching section.

  • 13.
    Kullberg, Angelika
    et al.
    University of Gothenburg, Sweden.
    Ekdahl, Anna-Lena
    Jönköping University, School of Education and Communication, HLK, Praktiknära utbildningsforskning (PUF), Mathematics Education Research. Wits School of Education, University of the Witwatersrand, Johannesburg, South Africa.
    Reis, Maria
    University of Gothenburg, Sweden.
    Björklund, Camilla
    University of Gothenburg, Sweden.
    Preschool children’s understanding of numbers shown in a partitioning task2019In: Proceedings of the 43rd Annual Meeting of the International Group for the Psychology of Mathematics Education: Volume 4: Oral Communications and Poster Presentations / [ed] Mellony Graven, Hamsa Venkat, Anthony A. Essien & Pamela Vale, Pretoria, South Africa: PME , 2019, p. 59-59Conference paper (Refereed)
    Abstract [en]

    Children’s ways of handling numbers in arithmetic tasks has been studied extensively, providing us with insights about strategies for solving tasks and development of arithmetic skills (Carpenter & Moser, 1982). Children’s ability to decompose numbers is one important part of development, since the ability allows children to apply different strategies when solving tasks (Hunting, 2003). Children’s different ways of encountering numbers in simple tasks may give a comprehensive understanding of the challenges in learning to use numbers in proficient ways. When experiencing part-part-whole relations of numbers, the child needs to consider the parts and the whole simultaneously. This paper reports on an analysis of 103 individual interviews with 5-year-old children on two occasions during their last year in preschool in Sweden. We report on the analysis of one particular task illustrating children’s experience of numbers when partitioning seven hidden marbles into two parts. The specific research question was: What different ways of experiencing numbers by 5-year-old children were exposed in a partitioning task?

    Variation theory (Marton, 2015) was used to analyse children’s ways of experiencing numbers and what aspects were critical to discern in order to solve the task. Variation theory emanates from more than thirty years of phenomenographic research, investigating different ways in which the same phenomena can be experienced. We found that children experienced numbers in six different ways: as number words, as names, as extents, as countables, as structure, or as known number facts. Our study shows that those ways of experiencing numbers that are foregrounding the cardinal, ordinal and the parts and whole simultaneously end up in plausible answers and the children initiate ways to handle the task in powerful ways. Consequently, if the children experience either the cardinal (e.g. numbers as extent) or the ordinal (e.g. numbers as names) they are not able to decompose the whole and thereby solve the task.

    References

    Carpenter, T. P., & Moser, J. M. (1982). The development of addition and subtraction problem-solving skills. In T. P. Carpenter, J. M. Moser, & T. A. Romberg (Eds.), Addition and subtraction: A cognitive perspective. Hillsdale, NY: Lawrence Erlbaum.

    Hunting, R. P. (2003). Part-whole number knowledge in preschool children. Journal of Mathematical Behavior, 22(3), 217-235.

    Marton, F. (2015). Necessary conditions of learning. New York: Routledge.

  • 14.
    Venkat, Hamsa
    et al.
    Jönköping University, School of Education and Communication, HLK, School Based Research, Mathematics Education Research. Wits School of Education South Africa.
    Ekdahl, Anna-Lena
    Jönköping University, School of Education and Communication, HLK, School Based Research, Mathematics Education Research.
    Runesson, Ulla
    Jönköping University, School of Education and Communication, HLK, School Based Research, Mathematics Education Research.
    Connections and Simultaneity: Analysing South African G3 Part-part-whole teaching2014In: Proceedings of the Joint Meeting of PME 38 and PME-NA 36 / [ed] Cynthia Nicol, Susan Oesterle, Peter Liljedahl, Darien Allan, 2014, Vol. 5, p. 337-344Conference paper (Refereed)
    Abstract [en]

    In this paper analysis of Grade 3 mathematics teaching in South Africa shows evidence of associations between teaching and learning outcomes in an adapted learning study. The intervention dealt with partitioning and part-part-whole relations, taking a structural approach within tasks and representations. Our analysis of this teaching emphasizes simultaneity of examples, and connections within and across examples and representations. This analysis indicated differences in enactment of a jointly planned lesson that related to different patterns of learning outcomes between the three classes. Episodes of teaching containing work with representations marked by connections and simultaneity closed gaps in learning outcomes seen in the pre-test.

1 - 14 of 14
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf