Change search
Refine search result
1 - 19 of 19
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Bassan, Gioia
    et al.
    Larsson, David
    KTH, Medicinsk bildteknik.
    Nordenfur, Tim
    KTH, Medicinsk bildteknik.
    Bjällmark, Anna
    KTH, Medicinsk bildteknik.
    Larsson, Matilda
    KTH, Medicinsk bildteknik.
    Acquisition of multiple mode shear wave propagation in transversely isotropic medium using dualprobe setup2015Conference paper (Refereed)
    Download full text (pdf)
    fulltext
  • 2.
    Bjällmark, Anna
    et al.
    KTH, Medicinsk teknik.
    Gustafsson, U
    Brodin, Lars-Åke
    KTH, Medicinsk teknik.
    Waldenström, A
    Larsson, Matilda
    KTH, Medicinsk teknik.
    A system to quantify and visualize ventricular rotation pattern of the heart2009Patent (Other (popular science, discussion, etc.))
    Abstract [en]

    Different modalities have been used to describe the rotational motion of the ventricles of the heart and studies have indicated LV twist to be an additional integral component in LV function. So far, only amplitudes and timings of rotation have been reported, whereas no method is available to fully describe the rotation pattern of the ventricles. The object of the present application is to achieve a system that presents a novel way to quantify and visualize the ventricular rotation pattern of the heart. We present a novel method that assesses and describes the rotation pattern by calculating the rotation axis of the ventricle. Non- invasive image acquisition is required to collect rotation values from different positions of the myocardium. Thereafter, a kinematic model of a ventricle is constructed to determine the rotation planes at different levels of the heart. The motion of the rotation planes are visualized by plotting the normal vectors of the planes over time, i.e. the rotation axis of the planes. This new method is different to all other methods used today for assessing cardiac function, as it does not describe the amplitude of a motion but the relationship in motion between different parts within a ventricle. Preliminary results indicate that the rotation axis is more sensitive to changes in the rotation pattern than conventional measurements of ventricular rotation. This new method could be used for early detection of cardiac diseases and for selection of patients for and optimization of cardiac resynchronization therapy.

  • 3.
    Bjällmark, Anna
    et al.
    KTH, Medicinsk teknik.
    Larsson, Matilda
    KTH, Medicinsk teknik.
    Brodin, Lars-Åke
    KTH, Medicinsk teknik.
    Nowak, Jacek
    Lind, Britta
    KTH, Medicinsk teknik.
    Hayashi, Shirley
    Mazza do Nascimento, Marcelo
    Riella, Miquel
    Seeberger, Astrid
    Effects of hemodialysis on the cardiovascular system: Quantitative analysis using wave intensity wall analysis and tissue velocity imaging2010In: Heart and Vessels, ISSN 0910-8327, E-ISSN 1615-2573Article in journal (Refereed)
    Abstract [en]

    Cardiovascular disease is the leading cause of death in patients with end stage renal disease (ESRD). The aim of this study was to investigate the changes in cardiovascular function induced by a single session of hemodialysis (HD) by the analysis of cardiovascular dynamics using wave intensity wall analysis (WIWA) and of systolic and diastolic myocardial function using tissue velocity imaging (TVI). Grey-scale cine loops of the left common carotid artery, conventional echocardiography and TVI images of the left ventricle were acquired before and after HD in 45 patients (17 women, mean age 54) with ESRD. The WIWA indexes, W1 preload-adjusted W1, W2 and preload-adjusted W2, and the TVI variables, isovolumic contraction velocity (IVCV), isovolumic contraction time (IVCT), peak systolic velocity (PSV), displacement, isovolumic relaxation velocity (IVRV), isovolumic relaxation time (IVRT), peak early diastolic velocity (E’) and peak late diastolic velocity (A’), were compared before and after HD. The WIWA measurements showed significant increases in W1 (p < 0.05) and preload-adjusted W1 (p < 0.01) after HD. W2 was significantly decreased (p < 0.05) after HD, whereas the change in preload-adjusted W2 was not significant. Systolic velocities, IVCV (p < 0.001) and PSV (p < 0.01), were increased after HD, whereas the AV-plane displacement were decreased (p < 0.01). For the measured diastolic variables, E’ was significantly decreased (p < 0.01) and IVRT was significantly prolonged (p < 0.05), after HD. A few correlations were found between WIWA and TVI variables. The WIWA and TVI measurements indicate that a single session of HD improves systolic function. The load dependency of the diastolic variables seems to be more pronounced than for the systolic variables. Preload-adjusted wave intensity indexes may contribute in the assessment of true LV contractility and relaxation.

  • 4.
    Bjällmark, Anna
    et al.
    KTH, Medicinsk teknik.
    Larsson, Matilda
    KTH, Medicinsk teknik.
    Lind, Britta
    KTH, Medicinsk teknik.
    Brodin, Lars-Åke
    KTH, Medicinsk teknik.
    Winter, Reidar
    Westholm, Carl
    Jacobsen, Per
    Velocity tracking - a novel method for quantitative analysis of longitudinal myocardial function2007In: Journal of the American Society of Echocardiography, ISSN 0894-7317, E-ISSN 1097-6795, Vol. 20, no 7, p. 847-856Article in journal (Refereed)
    Abstract [en]

    Doppler tissue imaging is a method for quantitative analysis of longitudinal myocardial velocity. Commercially available ultrasound systems can only present velocity information using a color Dopplerbased overlapping continuous color scale. The analysis is time-consuming and does not allow for simultaneous analysis in different projections. We have developed a new method, velocity tracking, using a stepwise color coding of the regional longitudinal myocardial velocity. The velocity data from 3 apical projections are presented as static and dynamic bull's-eye plots to give a 3-dimensional understanding of the function of the left ventricle. The static bull's-eye plot can display peak systolic velocity, late diastofic tissue velocity, or the sum of peak systolic velocity and early diastolic tissue velocity. Conversely, the dynamic bull's-eye plot displays how the myocardial velocities change over one heart cycle. Velocity tracking allows for a fast, simple, and hituitive visual analysis of the regional longitudinal contraction pattern of the left ventricle with a great potential to identify characteristic pathologic patterns.

  • 5.
    Bjällmark, Anna
    et al.
    KTH, Medicinsk teknik.
    Larsson, Matilda
    KTH, Medicinsk teknik.
    Shahgaldi, Kambiz
    Lind, Britta
    KTH, Skolan för teknik och hälsa (STH).
    Winter, Reidar
    Brodin, Lars-Ake
    KTH, Medicinsk teknik.
    Differences in myocardial velocities during supine and upright exercise stress echocardiography in healthy adults2009In: Clinical Physiology and Functional Imaging, ISSN 1475-0961, E-ISSN 1475-097X, Vol. 29, no 3, p. 216-223Article in journal (Refereed)
    Abstract [en]

    Tissue Velocity Imaging (TVI) is a method for quantitative analysis of longitudinal myocardial velocities, which can be used during exercise and pharmacological stress echocardiography. It is of interest to evaluate cardiac response to different types of stress tests and the differences between upright and supine bicycle exercise tests have not been fully investigated. Therefore, the aim of this study was to compare cardiac response during supine and upright exercise stress tests. Twenty young healthy individuals underwent supine and upright stress test. The initial workload was set to 30 W and was increased every minute by a further 30 W until physical exhaustion. Tissue Doppler data from the left ventricle were acquired at the end of every workload level using a GE Vivid7 Dimension system (> 200 frames s(-1)). In the off-line processing, isovolumic contraction velocity (IVCV), peak systolic velocity (PSV), isovolumic relaxation velocity (IVRV), peak early diastolic velocity (E') and peak late diastolic velocity (A') were identified at every workload level. No significant difference between the tests was found in PSV. On the contrary, E' was shown to be significantly higher (P < 0.001) during supine exercise than during upright exercise and IVRV was significantly lower (P < 0.001) during supine exercise compared to upright exercise. Upright and supine exercise stress echocardiography give a comparable increase in measured systolic velocities and significant differences in early diastolic velocities.

  • 6.
    Brodin, Lars-Åke
    et al.
    KTH, Medicinsk teknik.
    Elmqvist, H
    Bjällmark, Anna
    KTH, Medicinsk teknik.
    Larsson, Matilda
    KTH, Medicinsk teknik.
    Global and local detection of blood vessel elasticity2006Patent (Other (popular science, discussion, etc.))
    Abstract [en]

    The present invention is a non-invasive analysis system for detection of global and local blood vessel elasticity. The analysis system comprises two subsystems where subsystem 1 is data collecting unit and subsystem 2 is an analysis unit. The data collecting unit comprises one or many non-invasive image generating systems, or the data collecting system makes the registration possible of movement parameters that quantifies the dynamics of the blood vessel wall in longitudinal and radial directions. Subsystem 2 performs Wave Intensity Analysis which is an analysis method using co-related parts of the circulation system by measuring the intensity change (dl) of the blood vessel during a heart cycle. The intensity change is calculated as the product of the pressure derivate and the flow velocity derivate. In subsystem 2 the changes of pressure and flow are approximated by the deformation velocity or velocity of the radial and longitudinal direction, respectively. By calculating time constants and amplitudes of the intensity change graph a measure is obtained of the local and global elasticity of the blood vessel and atherosclerotic constrictions of arterial vessels may then be identified at an early stage.

  • 7.
    Hayashi, Shirley Yumi
    et al.
    KTH, Medicinsk teknik.
    Nowak, Jacek
    Lindholm, Bengt
    do Nascimento, Marcelo Mazza
    Lind, Britta
    KTH, Medicinsk teknik.
    Bjällmark, Anna
    KTH, Medicinsk teknik.
    Larsson, Matilda
    KTH, Medicinsk teknik.
    Pachaly, Maria Aparecida
    Seeberger, Astrid
    Riella, Miguel C.
    Brodin, Lars-Åke
    KTH, Medicinsk teknik.
    Left ventricular mechanical dyssynchrony in patients with different stages of chronic kidney disease and the effects of hemodialysis2013In: Hemodialysis International, ISSN 1492-7535, E-ISSN 1542-4758, Vol. 17, no 3, p. 346-358Article in journal (Refereed)
    Abstract [en]

    Left ventricular (LV) dyssynchrony is a known cause of mortality in patients with heart failure and may possibly play a similar role in patients with chronic kidney disease (CKD) in whom sudden death is one of the most common and as yet not fully explained cause of death. LV synchronicity and its relationship with increased volume load and various biomarkers was analyzed in 145 patients including 53 patients with CKD stages 3 and 4 and in 92 CKD stage 5 patients undergoing hemodialysis (HD) or peritoneal dialysis (PD) using color tissue Doppler imaging and tissue synchronization imaging. The HD patients were evaluated both before and after a single HD session. LV dyssynchrony was defined as a regional difference in time to peak systolic myocardial velocity, between 12 LV segments>105milliseconds. LV dyssynchrony was present in 54% of the patients with no difference between CKD 3 and 4 (58%), HD (48%), and PD (51%). LV dyssynchrony was independently associated with LV mass index and increased estimation of LV end-diastolic pressure. A single HD session resulted in significant changes in LV synchronicity variableswith improvement in 50% of the patientsespecially in patients with higher myocardial systolic velocities and lower LV mass index. Abnormalities in LV synchronicity are highly prevalent in CKD patients already prior to dialysis treatment and are associated with LV hypertrophy, LV dysfunction and load conditions, underlining the importance of volume status for LV synchronicity in CKD patients.

  • 8.
    Larsson, Malin
    et al.
    KTH, Medicinsk teknik.
    Bjällmark, Anna
    KTH, Medicinsk teknik.
    Larsson, Matilda
    KTH, Medicinsk teknik.
    Caidahl, Kenneth
    Karolinska Institutet.
    Winter, Reidar
    KTH, Medicinsk teknik.
    Brodin, Lars-Åke
    KTH, Medicinska sensorer, signaler och system (MSSS) (Stängd 20130701).
    A new ultrasound-based approach to visualize target specific polymeric contrast agent2011In: 2011 IEEE International Ultrasonics Symposium (IUS), IEEE , 2011, p. 1626-1629Conference paper (Refereed)
    Abstract [en]

    There are advantages of using a polymeric shelled contrast agent (CA) during ultrasound imaging instead of lipid shelled CA, e.g. particles can be attached to the surface, which enables an introduction of antibodies to the surface making the CA target specific. For this application it is essential to have a sensitive imaging technique suitable for polymeric CA. However, previously presented results have indicated difficulties in visualizing polymeric CA with commercially available contrast algorithms. Therefore a new subtraction algorithm (SA), was developed that define the difference between contrast and reference images. The aim of this study was to evaluate the response from a polymeric CA, when using the SA and compare it with existing contrast algorithms. Moreover, the possibility to detect a thin layer of CA was tested using the SA.

    Ultrasound short-axis images of a tissue-mimicking vessel phantom with a pulsating flow were obtained using a GE Vivid7 system (M12L) and a Philips iE33 system (S5-1). Repeated (n=91) contrast to tissue ratios (CTR) calculated at various mechanical index (MI) using the contrast algorithms pulse inversion (PI), power modulation (PM) and SA at a concentration of 105microbubbles/ml.

    The developed SA showed improvements in CTR compared to existing contrast algorithms. The CTRs were -0.99 dB ± 0.67 (MI 0.2), 9.46 dB ± 0.77 (MI 0.4) and 2.98 dB ± 0.60 (MI 0.8) with PI, 8.17 dB ± 1.15 (MI 0.2), 15.60 dB ± 1.29 (MI0.4) and 11.60 dB ± 0.73 (MI 0.8) with PM and 14.97 dB ± 3.97 (MI 0.2), 20.89 dB ± 3.54 (MI 0.4) and 21.93 dB ± 4.37 (MI 0.8) with the SA. In addition to this, the layer detection, when using the SA was successful.

    Download full text (pdf)
    FULLTEXT01
  • 9.
    Larsson, Malin K.
    et al.
    KTH, Medicinsk bildteknik.
    Larsson, Matilda
    KTH, Medicinsk bildteknik.
    Nowak, Greg
    Paradossi, Gaio
    Brodin, Lars-Åke
    KTH, Medicinsk bildteknik.
    Janerot Sjöberg, Birgitta
    KTH, Medicinsk teknik.
    Caidahl, Kenneth
    Bjällmark, Anna
    KTH, Medicinsk bildteknik.
    Endocardial border delineation capability of a novel multimodal polymer-shelled contrast agent2014In: Cardiovascular Ultrasound, E-ISSN 1476-7120, Vol. 12, p. 24-Article in journal (Refereed)
    Abstract [en]

    Background: A novel polymer-shelled contrast agent (CA) with multimodal and target-specific potential was developed recently. To determine its ultrasonic diagnostic features, we evaluated the endocardial border delineation as visualized in a porcine model and the concomitant effect on physiological variables. Methods: Three doses of the novel polymer-shelled CA (1.5 ml, 3 ml, and 5 ml [5 x 10(8) microbubbles (MBs)/ml]) and the commercially available CA SonoVue (1.5 ml [2-5 x 10(8) MBs/ml]) were used. Visual evaluations of ultrasound images of the left ventricle were independently performed by three observers who graded each segment in a 6-segment model as either 0 = not visible, 1 = weakly visible, or 2 = visible. Moreover, the duration of clinically useful contrast enhancement and the left ventricular opacification were determined. During anesthesia, oxygen saturation, heart rate, and arterial pressure were sampled every minute and the effect of injection of CA on these physiological variables was evaluated. Results: The highest dose of the polymer-shelled CA gave results comparable to SonoVue. Thus, no significant difference in the overall segment score distribution (2-47-95 vs. 1-39-104), time for clinically sufficient contrast enhancement (20-40 s for both) and left ventricular overall opacification was found. In contrast, when comparing the endocardial border delineation capacity for different regions SonoVue showed significantly higher segment scores for base and mid, except for the mid region when injecting 1.5 ml of the polymer-shelled CA. Neither high nor low doses of the polymer-shelled CA significantly affected the investigated physiological variables. Conclusions: This study demonstrated that the novel polymer-shelled CA can be used in contrast-enhanced diagnostic imaging without influence on major physiological variables.

  • 10.
    Larsson, Malin
    et al.
    KTH, Medicinsk teknik.
    Larsson, Matilda
    KTH, Medicinsk teknik.
    Oddo, Letizia
    Margheritelli, Silvia
    Paradossi, Gaio
    Nowak, Jacek
    Brodin, Lars-Åke
    KTH, Medicinsk teknik.
    Caidahl, Kenneth
    Bjällmark, Anna
    KTH, Medicinsk teknik.
    Visualization of multimodal polymer-shelled contrast agents using ultrasound contrast sequences: An experimental study in a tissue mimicking flow phantom2013In: Cardiovascular Ultrasound, E-ISSN 1476-7120, Vol. 11, p. 33-Article in journal (Refereed)
    Abstract [en]

    Background: A multimodal polymer-shelled contrast agent (CA) with target specific potential was recently developed and tested for its acoustic properties in a single element transducer setup. Since the developed polymeric CA has different chemical composition than the commercially available CAs, there is an interest to study its acoustic response when using clinical ultrasound systems. The aim of this study was therefore to investigate the acoustic response by studying the visualization capability and shadowing effect of three polymer-shelled CAs when using optimized sequences for contrast imaging. Methods: The acoustic response of three types of the multimodal CA was evaluated in a tissue mimicking flow phantom setup by measuring contrast to tissue ratio (CTR) and acoustic shadowing using five image sequences optimized for contrast imaging. The measurements were performed over a mechanical index (MI) range of 0.2-1.2 at three CA concentrations (10(6), 10(5), 10(4) microbubbles/ml). Results: The CTR-values were found to vary with the applied contrast sequence, MI and CA. The highest CTR-values were obtained when a contrast sequence optimized for higher MI imaging was used. At a CA concentration of 106 microbubbles/ml, acoustic shadowing was observed for all contrast sequences and CAs. Conclusions: The CAs showed the potential to enhance ultrasound images generated by available contrast sequences. A CA concentration of 106 MBs/ml implies a non-linear relation between MB concentration and image intensity.

  • 11.
    Larsson, Matilda
    et al.
    KTH, Medicinsk teknik.
    Bjällmark, Anna
    KTH, Medicinsk teknik.
    Lind, Britta
    KTH, Medicinsk teknik.
    Balzano, Rita
    KTH, Medicinsk teknik.
    Peolsson, Michael
    KTH, Skolan för teknik och hälsa (STH).
    Winter, Reidar
    Brodin, Lars-Åke
    KTH, Medicinsk teknik.
    Wave intensity wall analysis: a novel noninvasive method to measure wave inntensity2009In: Heart and Vessels, ISSN 0910-8327, E-ISSN 1615-2573, Vol. 24, p. 357-365Article in journal (Refereed)
    Abstract [en]

    Wave intensity analysis is a concept providing information about the interaction of the heart and the vascular system. Originally, the technique was invasive. Since then new noninvasive methods have been developed. A recently developed ultrasound technique to estimate tissue motion and deformation is speckle-tracking echocardiography. Speckle tracking-based techniques allow for accurate measurement of movement and deformation variables in the arterial wall in both the radial and the longitudinal direction. The aim of this study was to test if speckle tracking-derived deformation data could be used as input for wave intensity calculations. The new concept was to approximate changes of flow and pressure by deformation changes of the arterial wall in longitudinal and radial directions. Flow changes (dU/dt) were approximated by strain rate (sr, 1/s) of the arterial wall in the longitudinal direction, whereas pressure changes (dP/dt) were approximated by sign reversed strain rate (1/s) in the arterial wall in the radial direction. To validate the new concept, a comparison between the newly developed Wave Intensity Wall Analysis (WIWA) algorithm and a commonly used and validated wave intensity system (SSD-5500, Aloka, Tokyo, Japan) was performed. The studied population consisted of ten healthy individuals (three women, seven men) and ten patients (all men) with coronary artery disease. The present validation study indicates that the mechanical properties of the arterial wall, as measured by a speckle tracking-based technique are a possible input for wave intensity calculations. The study demonstrates good visual agreement between the two systems and the time interval between the two positive peaks (W1-W2) measured by the Aloka system and the WIWA system correlated for the total group (r = 0.595, P < 0.001). The correlation for the diseased subgroup was r = 0.797, P < 0.001 and for the healthy subgroup no significant correlation was found (P > 0.05). The results of the study indicate that the mechanical properties of the arterial wall could be used as input for wave intensity calculations. The WIWA concept is a promising new method that potentially provides several advantages over earlier wave intensity methods, but it still has limitations and needs further refinement and larger studies to find the optimal clinical use.

  • 12.
    Larsson, Matilda
    et al.
    KTH, Medicinsk teknik.
    Kremer, F.
    Kuznetsova, T.
    Lind, Britta
    KTH, Medicinsk teknik.
    Bjällmark, Anna
    KTH, Medicinsk teknik.
    Brodin, Lars-Åke
    KTH, Medicinsk teknik.
    D'hooge, J.
    In-vivo assessment of radial and longitudinal strain in the carotid artery using speckle tracking2010In: 2010 IEEE International Ultrasonics Symposium Proceedings, IEEE , 2010, p. 1328-1331Conference paper (Refereed)
    Abstract [en]

    Ultrasound-based algorithms are commonly used to assess mechanical properties of arterial walls in studies of arterial stiffness and atherosclerosis. Speckle tracking based techniques used for estimation of myocardial strain can be applied on vessels to estimate strain of the arterial wall. Previous elastography studies in vessels have mainly focused on radial strain measurements, whereas the longitudinal strain has been more or less ignored. However, recently we showed the feasibility of speckle tracking to assess longitudinal strain of the carotid artery in-silico. The aim of this study was to test this methodology in-vivo. Ultrasound images were obtained in seven healthy subjects with no known cardiovascular disease (39 ± 14 years old) and in seven patients with coronary artery disease (CAD), (69 ± 4 years old). Speckle tracking was performed on the envelope detected data using our previous developed algorithm. Radial and longitudinal strains were estimated throughout two cardiac cycles in a region of interest (ROI) positioned in the posterior vessel wall. The mean peak systolic radial and longitudinal strain values from the two heart cycles were compared between the groups using a student's t-test. The mean peak radial strain was -39.1 ± 15.1% for the healthy group and -20.4 ± 7.5% for the diseased group (p = 0.01), whereas the mean peak longitudinal strain was 4.8 ± 1.1% and 3.2 ± 1.6% (p = 0.05) for the healthy and diseased group, respectively. Both peak radial and longitudinal strain values were thus significantly reduced in the CAD patient group. This study shows the feasibility to estimate radial and longitudinal strain in-vivo using speckle tracking and indicates that the method can detect differences between groups of healthy and diseased (CAD) subjects.

  • 13.
    Maksuti, Elira
    et al.
    KTH, Medicinsk bildteknik.
    Widman, Erik
    KTH, Medicinsk bildteknik.
    Larsson, David
    KTH, Medicinsk bildteknik.
    Urban, Matthew W.
    Larsson, Matilda
    KTH, Medicinsk bildteknik.
    Bjällmark, Anna
    KTH, Medicinsk bildteknik.
    Arterial stiffness estimation by shear wave elastography: Validation in phantoms with mechanical testing2016In: Ultrasound in Medicine and Biology, ISSN 0301-5629, E-ISSN 1879-291X, Vol. 42, no 1, p. 308-321Article in journal (Refereed)
    Abstract [en]

    Arterial stiffness is an independent risk factor found to correlate with a wide range of cardiovascular diseases. It has been suggested that shear wave elastography (SWE) can be used to quantitatively measure local arterial shear modulus, but an accuracy assessment of the technique for arterial applications has not yet been performed. In this study, the influence of confined geometry on shear modulus estimation, by both group and phase velocity analysis, was assessed, and the accuracy of SWE in comparison with mechanical testing was measured in nine pressurized arterial phantoms. The results indicated that group velocity with an infinite medium assumption estimated shear modulus values incorrectly in comparison with mechanical testing in arterial phantoms (6.7 +/- 0.0 kPa from group velocity and 30.5 +/- 0.4 kPa from mechanical testing). To the contrary, SWE measurements based on phase velocity analysis (30.6 +/- 3.2 kPa) were in good agreement with mechanical testing, with a relative error between the two techniques of 8.8 +/- 6.0% in the shear modulus range evaluated (40-100 kPa). SWE by phase velocity analysis was validated to accurately measure stiffness in arterial phantoms.

  • 14.
    Nordenfur, Tim
    et al.
    KTH, Medicinsk bildteknik.
    Maksuti, Elira
    KTH, Medicinsk bildteknik.
    Widman, Erik
    KTH, Medicinsk bildteknik.
    Bjällmark, Anna
    KTH, Medicinsk bildteknik.
    Larsson, Matilda
    KTH, Medicinsk bildteknik.
    A Comparison of Shear Wave Elastography Pushing Sequences2013Conference paper (Refereed)
    Download full text (pdf)
    FULLTEXT01
  • 15. Westholm, Carl
    et al.
    Bjällmark, Anna
    KTH, Medicinsk teknik.
    Larsson, Matilda
    KTH, Medicinsk teknik.
    Jacobsen, Per
    Brodin, Lars-Åke
    KTH, Medicinsk teknik.
    Winter, Reidar
    Velocity tracking, a new and user independent method for detecting regional function of the left ventricle2009In: Clinical Physiology and Functional Imaging, ISSN 1475-0961, E-ISSN 1475-097X, Vol. 29, no 1, p. 24-31Article in journal (Refereed)
    Abstract [en]

    The use of two-dimensional echocardiography (2D echo) for detection of ischaemia is limited due to high user dependency. Longitudinal motion is sensitive for ischaemia and usable for quantitative measurement of longitudinal myocardial function but time consuming. Velocity tracking (VeT) is a new method that gives an easy three-dimensional understanding of both systolic and diastolic regional motion, using colour coded bull's eye presentation of longitudinal velocity, derived from colour coded tissue Doppler. The aim of this study was to test the accuracy of VeT in detecting ischaemia in non-ST-segment elevation myocardial infarction (NSTEMI) patients bedside. Twenty patients with NSTEMI and 10 controls were included. Echocardiography was performed within 24 h of symptoms and prior to coronary angiography. Bull's eye plots presenting the peak systolic velocity (PSV) and the sum of PSV and the E-wave-velocity (PSV+E) were created using our developed software. VeT was compared to expert wall motion scoring (WMS) and bedside echo. We used the clinical conclusion based on ECG, angiography and clinical picture as 'gold standard'. Sensitivity for ischaemia with VeT (PSV+E) was 85% and specificity 60%. The corresponding sensitivities for expert WMS were 75% (specificity 40%). For regional analysis VeT and WMS showed comparable results with correct regional outcome in 11/20 of patients both superior to bedside echo. Velocity tracking is a promising technique that provides an easily understandable three-dimensional bull's eye plot for assessment of regional left ventricular longitudinal velocity with great potential for detection of regional dysfunction and myocardial ischaemia.

  • 16.
    Widman, Erik
    et al.
    KTH, Medicinsk bildteknik.
    Maksuti, Elira
    KTH, Medicinsk bildteknik.
    Larsson, David
    KTH, Medicinsk bildteknik.
    Urban, M.
    Caidahl, K.
    KTH, Medicinsk teknik.
    Bjällmark, Anna
    KTH, Medicinsk bildteknik.
    Larsson, Matilda
    KTH, Medicinsk bildteknik.
    Feasibility of shear wave elastography for plaque characterization2014In: IEEE International Ultrasonics Symposium, IUS, 2014, p. 1818-1821Conference paper (Refereed)
    Abstract [en]

    Determining plaque vulnerability is critical when selecting the most suitable treatment for patients with atherosclerotic plaque in the common carotid artery and quantitative characterization methods are needed. In this study, shear wave elastography (SWE) was used to characterize soft plaque mimicking inclusions in three atherosclerotic arterial phantoms by using phase velocity analysis in a static environment. The results were validated with axial tensile mechanical testing (MT). SWE measured a mean shear modulus of 5.8 ± 0.3 kPa and 25.0 ± 1.2 kPa versus 3.0 kPa and 30.0 kPa measured by mechanical testing in the soft plaques and phantom walls respectively. The results show good agreement between MT and SWE for both the plaque and phantom wall.

  • 17.
    Widman, Erik
    et al.
    KTH, Medicinsk bildteknik.
    Maksuti, Elira
    KTH, Medicinsk bildteknik.
    Larsson, David
    KTH, Medicinsk bildteknik.
    Urban, M W
    Bjällmark, Anna
    KTH, Medicinsk bildteknik.
    Larsson, Matilda
    KTH, Medicinsk bildteknik.
    Shear wave elastography plaque characterization with mechanical testing validation: a phantom study.2015In: Physics in Medicine and Biology, ISSN 0031-9155, E-ISSN 1361-6560, Vol. 60, no 8, p. 3151-3174Article in journal (Refereed)
    Abstract [en]

    Determining plaque vulnerability is critical when selecting the most suitable treatment for patients with atherosclerotic plaque. Currently, clinical non-invasive ultrasound-based methods for plaque characterization are limited to visual assessment of plaque morphology and new quantitative methods are needed. In this study, shear wave elastography (SWE) was used to characterize hard and soft plaque mimicking inclusions in six common carotid artery phantoms by using phase velocity analysis in static and dynamic environments. The results were validated with mechanical tensile testing. In the static environment, SWE measured a mean shear modulus of 5.8±0.3kPa and 106.2±17.2kPa versus 3.3±0.5kPa and 98.3±3.4kPa measured by mechanical testing in the soft and hard plaques respectively. Furthermore, it was possible to measure the plaques' shear moduli throughout a simulated cardiac cycle. The results show good agreement between SWE and mechanical testing and indicate the possibility for in vivo arterial plaque characterization using SWE.

  • 18.
    Widman, Erik
    et al.
    KTH, Medicinsk avbildning.
    Maksuti, Elira
    KTH, Medicinsk avbildning.
    Larsson, Matilda
    KTH, Medicinsk avbildning.
    Bjällmark, Anna
    KTH, Medicinsk avbildning.
    Caidahl, K.
    D'Hooge, J.
    Shear wave elastography for characterization of carotid artery plaques-A feasibility study in an experimental setup2012In: 2012 IEEE International Ultrasonics Symposium (IUS), IEEE , 2012, p. 6562400-Conference paper (Refereed)
    Abstract [en]

    Characterization of vulnerable plaques in the carotid artery is critical for the prevention of ischemic stroke. However, ultrasound-based methods for plaque characterization used in the clinics today are limited to visual assessment and evaluation of plaque echogenicity. Shear Wave Elastography (SWE) is a new tissue characterization technique based on radiation force-induced shear wave propagation with potential use in plaque vulnerability assessment. The purpose of this study was to develop an experimental setup to test the feasibility of SWE for carotid plaque characterization. A carotid artery phantom with a soft inclusion in the wall, mimicking a vulnerable plaque, was constructed (10% polyvinyl alcohol (PVA), 3% graphite) by exposing the vessel and plaque to three and one freeze-thaw cycles (6h freeze, 6h thaw) respectively. An Aixplorer SWE system (Supersonic Imagine) was used to measure the shear wave speed (cT) in the vessel wall and plaque. The Young's modulus (E) was then calculated via the Moens-Korteweg (M-K) equation. For comparison, eight cylinders (d = 4 cm, h = 4 cm) were constructed for mechanical testing from the same PVA batch, of which four were exposed to three freeze-thaw cycles (mimicking the vessel wall) and four to one freeze-thaw cycle (mimicking the plaque). The Young's moduli for the cylinders were obtained via a displacement controlled mechanical compression test (Instron 5567) by applying 5% strain. The mean shear wave speed was 2.6 (±0.7) m/s in the vessel wall, 1.8 (±0.7) m/s in the plaque, resulting in Evessel = 11.5 (±0.5) kPa, Eplaque = 4.3 (±0.5) kPa. The compression tests resulted in E = 64.2 (±11.1) kPa in the hard cylinder and E = 9.7 (±3.1) kPa in the soft cylinder. The results showed that it was possible to distinguish between the arterial wall and the plaque. The disagreement between mechanical testing and SWE can be explained by the fact that the shear wave does not propagate monochromatically in cylindrical geometry. To achieve a better calculation of the elastic modulus, the frequency dependency of the shear wave velocity must be considered.

  • 19.
    Widman, Erik
    et al.
    KTH, Medicinsk avbildning.
    Maksuti, Elira
    KTH, Medicinsk teknik.
    Larsson, Matilda
    KTH, Medicinsk teknik.
    Bjällmark, Anna
    KTH, Medicinsk teknik.
    Nordenfur, Tim
    KTH, Medicinsk teknik.
    Caidahl, Kenneth
    D’hooge, Jan
    Shear wave elastography of the arterial wall: Where are we today2013Conference paper (Refereed)
    Abstract [en]

    1. Introduction

    Shear Wave Elastography (SWE) is a recently developed noninvasive method for elastography assessment using ultrasound. The technique consists of sending an acoustic radiation force (pushing sequence) into the tissue that in turn generates an orthogonal low frequency propagating shear wave. The shear wave propagation is measured real time by high speed B-mode imaging. From the B-mode images, the shear wave is tracked via normalized cross-correlation and the speed is calculated, which is used to generate an elasticity map of the tissue’s shear modulus. To date, the technique has mostly been used in large homogeneous tissues such as breast and liver where it successfully detects lesions and tumors that are easily missed with normal B-mode ultrasound [1]. SWE could potentially be applied in vascular applications to assess elasticity of the arterial wall to characterize the stiffness as an early indicator of cardiac disease. Furthermore, SWE could aid in the characterization of plaques in the carotid artery, which is critical for the prevention of ischemic stroke

    2. Methods and Results

    An initial study was performed using an Aixplorer SWE system (Supersonic Imagine, France) to measure the shear modulus in a polyvinyl alcohol phantom (PVA) vessel with a plaque inclusion (Figure 1). It was possible to distinguish the softer inclusion mean shear wave speed (2.1 m/s) from the arterial wall (3.5 m/s) on the SWE colour-map, but the Young’s Modulus calculation of the arterial wall (E=19.8 kPa) did not match the measured Young’s Modulus (E=53.1 kPa) from comparative mechanical testing.</p><p>We have begun implementing various pushing sequences (single unfocused push, single focused push, line push, comb push) on a programmable ultrasound machine (Verasonics, USA) using a linear transducer (Philips L7-4) in a homogeneous PVA phantom. An algorithm for one dimensional cross-correlation tracking and shear wave speed estimation has been developed and initially tested in an experimental setup

    3. Discussion

    According to our initial results, it is possible that SWE could be applied in vascular applications. However, the initial mechanical testing vs. SWE comparison indicated that further development to the post processing is needed before applying it on the carotid artery, which is a heterogeneous tissue with other wave propagation properties than e.g. breast tissue. The carotid artery has a difficult geometry to study for several reasons. The intima-media complex is very thin (&lt; 1mm), and the vessel wall is not stationary. Furthermore, the cylindrical shape of the artery produces complex wave reflections within the arterial wall, which result in a polychromatic propagation of the shear wave. A few studies have applied techniques based on SWE to the arterial wall with promising results and a pilot study demonstrating the feasibility of the technique in-vivo has been published [2]. Still, a considerable effort is needed to validate and optimize the technique for the clinical vascular setting.

    Download full text (pdf)
    fulltext
1 - 19 of 19
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf