Endre søk
Begrens søket
1 - 7 of 7
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Ahmadkhaniha, Donya
    et al.
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Material och tillverkning.
    Eriksson, Fredrik
    Linkopings universitet, Department of Physics, Linkoping, Sweden.
    Leisner, Peter
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Material och tillverkning. RISE Research Institute of Sweden, Borås, Sweden.
    Zanella, Caterina
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Material och tillverkning.
    Effect of SiC particle size and heat-treatment on microhardness and corrosion resistance of NiP electrodeposited coatings2018Inngår i: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 769, s. 1080-1087Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Electrodeposition of NiP composite coatings with nano and sub-micron sized SiC has been carried out to investigate the possibility of replacing hard chromium coatings. The composition and structure of the coatings were evaluated by energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) analysis, respectively. Microhardness was measured by Vickers indentation and polarization measurements were carried out to study the corrosion behavior of the coatings. The results showed that submicron particles can be codeposited with a higher content as compared to nano sized ones. However, even if a smaller amount of the nano-sized SiC particles are incorporated in the coating, the contribution to an increasing microhardness was comparable with the submicron sized particles, which can be related to the higher density of codeposited particles. SiC particles did not change the anodic polarization behavior of NiP coatings in a 3.5% NaCl solution. Finally, the effect of heat-treatment on the coatings properties at 400 °C for 1 h was studied to investigate the contribution of particles and heat-treatment on hardness and corrosion properties. It was found that the heat-treatment doubled the microhardness and changed the anodic polarization behavior of the coatings from passive to active with respect to the as-plated conditions.

    Fulltekst tilgjengelig fra 2020-08-04 00:00
  • 2.
    Ahmadkhaniha, Donya
    et al.
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Material och tillverkning.
    Huang, Y.
    University of Southampton, Southampton, UK.
    Jaskari, M.
    University of Oulu, Nivala, Finland.
    Järvenpää, A.
    University of Oulu, Nivala, Finland.
    Heydarzadeh Sohi, M.
    University of Tehran, Tehran, Iran.
    Zanella, Caterina
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Material och tillverkning.
    Karjalainen, L.P.
    University of Oulu, Oulu, Finland.
    Langdon, T.G.
    University of Southampton, Southampton, UK..
    Effect of high-pressure torsion on microstructure, mechanical properties and corrosion resistance of cast pure Mg2017Konferansepaper (Fagfellevurdert)
    Abstract [en]

    High-pressure torsion (HPT) processing was applied to cast pure Mg pieces and its effects on microstructure, hardness and tensile properties as well as corrosion resistance were evaluated. The microstructure of the processed samples was examined by electron backscatter diffraction (EBSD) and the mechanical properties were determined by microhardness and tensile tests. Corrosion resistance of the samples was studied via electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. The results showed that HPT refined the grain size of Mg very effectively from millimeters in the cast structure to a few micrometers homogeneously through the thickness and created a basal texture on the surface. One or five turns of HPT produced no significant difference in the grain size of the processed Mg but the hardness was a maximum after one turn. The yield strength of the cast Mg was increased by seven times whereas the corrosion resistance was not affected by the HPT processing.

  • 3.
    Ahmadkhaniha, Donya
    et al.
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Material och tillverkning.
    Huang, Yi
    Materials Research Group, Department of Mechanical Engineering, University of Southampton, Southampton, United Kingdom.
    Jaskari, Matias
    Kerttu Saalasti Institute, University of Oulu, Nivala, Finland.
    Järvenpää, Antti
    Kerttu Saalasti Institute, University of Oulu, Nivala, Finland.
    Sohi, Mahmoud Heydarzadeh
    School of Metallurgy and Materials, College of Engineering, University of Tehran, Tehran, Iran.
    Zanella, Caterina
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Material och tillverkning.
    Karjalainen, L. Pentti
    Centre for Advanced Steels Research, University of Oulu, Oulu, Finland.
    Langdon, Terence G.
    Materials Research Group, Department of Mechanical Engineering, University of Southampton, Southampton, United Kingdom.
    Effect of high-pressure torsion on microstructure, mechanical properties and corrosion resistance of cast pure Mg2018Inngår i: Journal of Materials Science, ISSN 0022-2461, E-ISSN 1573-4803, Vol. 53, nr 24, s. 16585-16597Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    High-pressure torsion (HPT) processing was applied to cast pure magnesium, and the effects of the deformation on the microstructure, hardness, tensile properties and corrosion resistance were evaluated. The microstructures of the processed samples were examined by electron backscatter diffraction, and the mechanical properties were determined by Vickers hardness and tensile testing. The corrosion resistance was studied using electrochemical impedance spectroscopy in a 3.5% NaCl solution. The results show that HPT processing effectively refines the grain size of Mg from millimeters in the cast structure to a few micrometers after processing and also creates a basal texture on the surface. It was found that one or five turns of HPT produced no significant difference in the grain size of the processed Mg and the hardness was a maximum after one turn due to recovery in some grains. Measurements showed that the yield strength of the cast Mg increased by about seven times whereas the corrosion resistance was not significantly affected by the HPT processing. 

    Fulltekst (pdf)
    Fulltext
  • 4.
    Ahmadkhaniha, Donya
    et al.
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Material och tillverkning.
    Pinate, Santiago
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Material och tillverkning.
    Leisner, Peter
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Material och tillverkning. RISE Research Institute of Sweden, Borås.
    Zanella, Caterina
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Material och tillverkning.
    Electrodeposition of Ni high P composite coatings containing nano and submicro ceramic particles2017Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    In this study, electrodeposition of Ni-P composite coatings has been carried out to investigate the possibility of replacing hard chromium coatings. Therefore, electrodeposition of Ni-P based composite coating with different SiC particle size (50 nm, 100 nm and 500 nm) or B4C (500 nm) was performed. The coating’s composition was evaluated by energy dispersive spectroscopy (EDS), microhardness of the coatings was measured by Vickers indentor and polarization measurements were carried out to study the corrosion behavior of the coatings. The results showed that B4C particles can codeposit in higher percent respect to SiC ones. Ceramic particles increased microhardness of Ni-P coatings to 700HV0.01. The polarization behavior of all the coatings in 3.5% NaCl was similar in as plated state proving that particles did not hindered the passive behaviour. Finally, the effect of heat-treatment (at 400 ºC for 1 hour) on the coating’s properties was studied to compare the contribution of particles and heat-treatment on mechanical and corrosion properties of the coatings. Heat-treatment increased the coating’s microhardness and changed the anodic polarization behavior of the coatings respect to the as plated conditions.

  • 5.
    Ahmadkhaniha, Donya
    et al.
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Material och tillverkning.
    Zanella, Caterina
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Material och tillverkning.
    The effects of additives, particles load and current density on codeposition of SiC particles in NiP nanocomposite coatings2019Inngår i: Coatings, ISSN 2079-6412, Vol. 9, nr 9, artikkel-id 554Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this study, electrodeposition of NiP composite coatings with the addition of SiC 100 nm was carried out on low carbon steel studying the effect of additives (sodium dodecyl sulfate, saccharin), particles load (10 or 20 g/L) and current density (1, 2 and 4 A/dm2). As a benchmark, coatings from an additive-free bath were also deposited, despite additives being essential for a good quality of the coatings. The coating's morphology and composition were evaluated by scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS). It was shown that by addition of sodium dodecyl sulfate (SDS), pure NiP coating with a higher P content was achieved, and their morphology changed to nodular. SDS also reduced the codeposited fraction of SiC particles, while saccharin increased it. SiC loading and current density had less impact respect to the additives on codeposition of SiC particles. Finally, the microhardness of NiP coatings did not increase linearly by codeposition of SiC particles. 

  • 6.
    Seifiyan, Hamed
    et al.
    School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Iran.
    Heydarzadeh Sohi, Mahmoud
    School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Iran.
    Ansari, Mohammad
    Department of Mechanical and Mechatronics Engineering, University of Waterloo, Canada.
    Ahmadkhaniha, Donya
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Material och tillverkning.
    Saremi, Mohsen
    School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Iran.
    Influence of friction stir processing conditions on corrosion behavior of AZ31B magnesium alloy2019Inngår i: Journal of Magnesium and Alloys, ISSN 2213-9567, Vol. 7, nr 4, s. 605-616Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The present study aims to investigate the effect of friction stir processing (FSP) conditions on the corrosion characteristic of AZ31B magnesium alloy. Specimens made of AZ31B alloy were friction stir processed under various processing conditions, and their microstructure and corrosion behavior were studied. The corrosion behavior was studied by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and immersion test in 3.5% sodium chloride (NaCl) solution. The results showed a substantial improvement in the corrosion resistance of the friction stir processed AZ31B alloy. The improvement is likely a result of more stable corrosion products and microstructure refinement formed after friction sir processing. 

  • 7.
    Tsongas, Konstantinos
    et al.
    Center for Research and Technology - Hellas, Thessaloniki, Institute for Bio-Economy and Agri-Technology, Thessaloniki, Greece.
    Tzetzis, Dimitrios
    Center for Research and Technology - Hellas, Thessaloniki, Institute for Bio-Economy and Agri-Technology, Thessaloniki, Greece and School of Science and Technology, International Hellenic University, Thessaloniki, Greece.
    Karantzalis, Alexander
    Center for Research and Technology - Hellas, Thessaloniki, Institute for Bio-Economy and Agri-Technology, Thessaloniki, Greece and Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece.
    Banias, George
    Center for Research and Technology - Hellas, Thessaloniki, Institute for Bio-Economy and Agri-Technology, Thessaloniki, Greece.
    Exarchos, Dimitrios
    Center for Research and Technology - Hellas, Thessaloniki, Institute for Bio-Economy and Agri-Technology, Thessaloniki, Greece.
    Ahmadkhaniha, Donya
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Material och tillverkning.
    Zanella, Caterina
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Material och tillverkning.
    Matikas, Theodore
    Center for Research and Technology - Hellas, Thessaloniki, Institute for Bio-Economy and Agri-Technology, Thessaloniki, Greece and Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece.
    Bochtis, Dionysis
    Center for Research and Technology - Hellas, Thessaloniki, Institute for Bio-Economy and Agri-Technology, Thessaloniki, Greece.
    Microstructural, Surface Topology and Nanomechanical Characterization of Electrodeposited Ni-P/SiC Nanocomposite Coatings2019Inngår i: Applied Sciences, E-ISSN 2076-3417, Vol. 9, nr 14, artikkel-id 2901Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In the present study, nickel phosphorous alloys (Ni-P) and Ni-P/ silicon carbide (SiC) nanocomposite coatings were deposited by electrodeposition on steel substrates in order for their microstructural properties to be assessed while using SEM, XRD, and three-dimensional (3D) profilometry as well as nanoindentation. The amorphisation of the as-plated coatings was observed in all cases, whereas subsequent heat treatment induced crystallization and Ni3P intermetallic phase precipitation. Examination of the surface topology revealed that the surface roughness follows the deposition characteristics and heat treatment induced microstructural changes. Additionally, substantial improvements in mechanical properties, including hardness, yield stress, and elasticity modulus, were obtained for the Ni-P, Ni-P/SiC nanocomposites when heat treated as seen from the nanoindentation results. A Finite Element Analysis (FEA) was developed to simulate the nanoindentation tests that enable the precise extraction of the Ni-P and Ni-P/SiC nanocomposite coatings’ stress-strain behavior. It is shown that the correlation between the nanoindentation tests and the computational models was satisfactory, while the stress-strain curves revealed higher yield points for the heat-treated samples.

1 - 7 of 7
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf