Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bae, Juhee
    et al.
    Högskolan i Skövde, Institutionen för informationsteknologi.
    Falkman, Göran
    Högskolan i Skövde, Institutionen för informationsteknologi.
    Helldin, Tove
    Högskolan i Skövde, Institutionen för informationsteknologi.
    Riveiro, Maria
    Högskolan i Skövde, Institutionen för informationsteknologi.
    Visual Data Analysis2019In: Data science in Practice / [ed] A. Said, & V. Torra, Springer, 2019, p. 133-155Chapter in book (Refereed)
    Abstract [en]

    Data Science offers a set of powerful approaches for making new discoveries from large and complex data sets. It combines aspects of mathematics, statistics, machine learning, etc. to turn vast amounts of data into new insights and knowledge. However, the sole use of automatic data science techniques for large amounts of complex data limits the human user’s possibilities in the discovery process, since the user is estranged from the process of data exploration. This chapter describes the importance of Information Visualization (InfoVis) and visual analytics (VA) within data science and how interactive visualization can be used to support analysis and decision-making, empowering and complementing data science methods. Moreover, we review perceptual and cognitive aspects, together with design and evaluation methodologies for InfoVis and VA.

  • 2.
    Bae, Juhee
    et al.
    Högskolan i Skövde, Institutionen för informationsteknologi.
    Helldin, Tove
    Högskolan i Skövde, Institutionen för informationsteknologi.
    Riveiro, Maria
    Högskolan i Skövde, Institutionen för informationsteknologi.
    Identifying Root Cause and Derived Effects in Causal Relationships2017In: Human Interface and the Management of Information: Information, Knowledge and Interaction Design: 19th International Conference, HCI International 2017, Vancouver, BC, Canada, July 9–14, 2017, Proceedings, Part I / [ed] Sakae Yamamoto, Springer , 2017, p. 22-34Conference paper (Refereed)
    Abstract [en]

    This paper focuses on identifying factors that influence the process of finding a root cause and a derived effect in causal node-link graphs with associated strength and significance depictions. We discuss in detail the factors that seem to be involved in identifying a global cause and effect based on the analysis of the results of an online user study with 44 participants, who used both sequential and non-sequential graph layouts. In summary, the results show that participants show geodesic-path tendencies when selecting causes and derived effects, and that context matters, i.e., participant’s own beliefs, experiences and knowledge might influence graph interpretation.

  • 3.
    Bae, Juhee
    et al.
    Högskolan i Skövde, Institutionen för informationsteknologi.
    Helldin, Tove
    Högskolan i Skövde, Institutionen för informationsteknologi.
    Riveiro, Maria
    Högskolan i Skövde, Institutionen för informationsteknologi.
    Understanding Indirect Causal Relationships in Node-Link Graphs2017In: Computer graphics forum (Print), ISSN 0167-7055, E-ISSN 1467-8659, Vol. 36, no 3, p. 411-421Article in journal (Refereed)
    Abstract [en]

    To find correlations and cause and effect relationships in multivariate data sets is central in many data analysis problems. A common way of representing causal relations among variables is to use node-link diagrams, where nodes depict variables and edges show relationships between them. When performing a causal analysis, analysts may be biased by the position of collected evidences, especially when they are at the top of a list. This is of crucial importance since finding a root cause or a derived effect, and searching for causal chains of inferences are essential analytic tasks when investigating causal relationships. In this paper, we examine whether sequential ordering influences understanding of indirect causal relationships and whether it improves readability of multi-attribute causal diagrams. Moreover, we see how people reason to identify a root cause or a derived effect. The results of our design study show that sequential ordering does not play a crucial role when analyzing causal relationships, but many connections from/to a variable and higher strength/certainty values may influence the process of finding a root cause and a derived effect.

  • 4.
    Bae, Juhee
    et al.
    Högskolan i Skövde, Institutionen för informationsteknologi.
    Ventocilla, Elio
    Högskolan i Skövde, Institutionen för informationsteknologi.
    Riveiro, Maria
    Högskolan i Skövde, Institutionen för informationsteknologi.
    Helldin, Tove
    Högskolan i Skövde, Institutionen för informationsteknologi.
    Falkman, Göran
    Högskolan i Skövde, Institutionen för informationsteknologi.
    Evaluating Multi-Attributes on Cause and Effect Relationship Visualization2017In: Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2017): Volumne 3: IVAPP / [ed] Alexandru Telea, Jose Braz, Lars Linsen, SciTePress , 2017, p. 64-74Conference paper (Refereed)
    Abstract [en]

    This paper presents findings about visual representations of cause and effect relationship's direction, strength, and uncertainty based on an online user study. While previous researches focus on accuracy and few attributes, our empirical user study examines accuracy and the subjective ratings on three different attributes of a cause and effect relationship edge. The cause and effect direction was depicted by arrows and tapered lines; causal strength by hue, width, and a numeric value; and certainty by granularity, brightness, fuzziness, and a numeric value. Our findings point out that both arrows and tapered cues work well to represent causal direction. Depictions with width showed higher conjunct accuracy and were more preferred than that with hue. Depictions with brightness and fuzziness showed higher accuracy and were marked more understandable than granularity. In general, depictions with hue and granularity performed less accurately and were not preferred compared to the ones with numbers or with width and brightness.

    Download full text (pdf)
    FULLTEXT01
  • 5.
    Bae, Juhee
    et al.
    Högskolan i Skövde, Institutionen för informationsteknologi.
    Ventocilla, Elio
    Högskolan i Skövde, Institutionen för informationsteknologi.
    Riveiro, Maria
    Högskolan i Skövde, Institutionen för informationsteknologi.
    Torra, Vicenç
    Högskolan i Skövde, Institutionen för informationsteknologi.
    On the Visualization of Discrete Non-additive Measures2018In: Aggregation Functions in Theory and in Practice AGOP 2017 / [ed] Torra V, Mesiar R, Baets B, Springer, 2018, p. 200-210Conference paper (Refereed)
    Abstract [en]

    Non-additive measures generalize additive measures, and have been utilized in several applications. They are used to represent different types of uncertainty and also to represent importance in data aggregation. As non-additive measures are set functions, the number of values to be considered grows exponentially. This makes difficult their definition but also their interpretation and understanding. In order to support understability, this paper explores the topic of visualizing discrete non-additive measures using node-link diagram representations.

  • 6.
    Ventocilla, Elio
    et al.
    Högskolan i Skövde, Institutionen för informationsteknologi.
    Bae, Juhee
    Högskolan i Skövde, Institutionen för informationsteknologi.
    Riveiro, Maria
    Högskolan i Skövde, Institutionen för informationsteknologi.
    Said, Alan
    Högskolan i Skövde, Institutionen för informationsteknologi.
    A Billiard Metaphor for Exploring Complex Graphs2017In: Second Workshop on Supporting Complex Search Tasks / [ed] Marijn Koolen, Jaap Kamps, Toine Bogers, Nick Belkin, Diane Kelly, Emine Yilmaz, 2017, p. 37-40Conference paper (Refereed)
    Abstract [en]

    Exploring and revealing relations between the elements is a fre-quent task in exploratory analysis and search. Examples includethat of correlations of attributes in complex data sets, or facetedsearch. Common visual representations for such relations are di-rected graphs or correlation matrices. These types of visual encod-ings are often - if not always - fully constructed before being shownto the user. This can be thought of as a top-down approach, whereusers are presented with a full picture for them to interpret andunderstand. Such a way of presenting data could lead to a visualoverload, specially when it results in complex graphs with highdegrees of nodes and edges. We propose a bottom-up alternativecalled Billiard where few elements are presented at rst and fromwhich a user can interactively construct the rest based on whats/he nds of interest. The concept is based on a billiard metaphorwhere a cue ball (node) has an eect on other elements (associatednodes) when stroke against them.

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf