Ändra sökning
Avgränsa sökresultatet
1 - 14 av 14
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Elgh, Fredrik
    et al.
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Industriell produktutveckling, produktion och design.
    Johansson, Joel
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Industriell produktutveckling, produktion och design.
    Stolt, Roland
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Industriell produktutveckling, produktion och design.
    Lennartsson, Martin
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Byggnadsteknik och belysningsvetenskap.
    Heikkinen, Tim
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Industriell produktutveckling, produktion och design.
    Raudberget, Dag
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Industriell produktutveckling, produktion och design.
    Platform Models for Agile Customization – What's Beyond Modularization?2018Ingår i: Transdisciplinary Engineering Methods for Social Innovation of Industry 4.0: Proceedings of the 25th ISPE Inc. International Conference on Transdisciplinary Engineering / [ed] Margherita Peruzzini, Marcello Pellicciari, Cees Bil, Josip Stjepandić, Nel Wognum, IOS Press, 2018, s. 371-380Konferensbidrag (Refereegranskat)
    Abstract [en]

    Many manufacturing companies are suppliers that deliver unique solutions to different business customers. Intense quotation work, with a high demand on accuracy and quick response, and development projects executed in close collaboration with customers and other actors characterize these companies. The projects can run for years or a few weeks depending on the business. Changes of requirements are frequent and technology development required for improved functionality, sustainability and competitiveness. The use of a product platform has been acknowledged as a strategic enabler for product family development and mass customization. However, companies struggle with adopting the common platform approach building upon pre-defined modules and components as it constraints the fulfilment of unique customer requirements and the introduction of new technology at high pace. This work reports the results from case studies conducted in collaboration with four companies. They are in many ways different but face the same challenges when it comes to customization, fluctuating requirements and need of high pace in technology advancement. The focus of this paper is on their initial states; including how they work with their product concept before the customer entry point, the work that is initiated when an order is accepted, the character of requirements and the adoption of product platforms. Criteria on, and identification of, new platforms models, termed Design Assets, are presented followed by a mapping to the Design Platform concept pointing out areas upcoming work, both scientifically and at the companies.

  • 2.
    Heikkinen, Tim
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Industriell produktutveckling, produktion och design.
    Multidisciplinary design automation: Working with product model extensions2018Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Being able to efficiently and effectively provide custom products has been identified as a competitive advantage for manufacturing organizations. Product configuration has been shown to be an effective way of achieving this through a modularization, product platform and product family development approach. A core assumption behind product configuration is that the module variants and their constraints can be explicitly defined as product knowledge in terms of geometry and configuration rules. This is not always the case, however. Many companies require extensive engineering to develop each module variant and cannot afford to do so in order to meet potential customer requirements within a predictable future. Instead, they try to implicitly define the module variants in terms of the process for how they can be realized. In this way they can realize module variants on demand efficiently and effectively when the customer requirements are better defined, and the development can be justified by the increased probability of profiting from the outcome.

    Design automation, in its broadest definition, deals with computerized engineering support by effectively and efficiently utilizing pre-planned reusable assets to progress the design process. There have been several successful implementations reported in the literature, but a widespread use is yet to be seen. It deals with the explicit definition of engineering process knowledge, which results in a collection of methods and models that can come in the form of computer scripts, parametric CADmodels, template spreadsheets, etc. These methods and models are developed using various computer tools and maintained within the different disciplines involved, such as geometric modeling, simulation, or manufacturing, and are dependent on each other through the product model. To be able to implement, utilize, and manage design automation systems in or across multiple disciplines, it is important to first understand how the disciplinary methods and models are dependent on each other through the product model and then how these relations should be constructed to support the users without negatively affecting other aspects, such as modeling flexibility, minimum documentation, and software tool independence.

    To support the successful implementation and management of design automation systems the work presented here has focused on understanding how some digital product model constituents are, can, and, to some extent, should be extended to concretize relations between methods and models from different tools and disciplines. It has been carried out by interviewing Swedish industrial companies, performing technical reviews, performing literature reviews, and developing prototypes, which has resulted in an increased understanding and the consequent development of a conceptual framework that highlights aspects relating to the choice of extension techniques.

  • 3.
    Heikkinen, Tim
    et al.
    Högskolan i Jönköping, Tekniska Högskolan, JTH. Forskningsmiljö Produktutveckling - Datorstödd konstruktion.
    Johansson, Joel
    Högskolan i Jönköping, Tekniska Högskolan, JTH. Forskningsmiljö Produktutveckling - Datorstödd konstruktion.
    Elgh, Fredrik
    Högskolan i Jönköping, Tekniska Högskolan, JTH. Forskningsmiljö Produktutveckling - Datorstödd konstruktion.
    Assessment of Simulation Ready CAD Models in a Set Based Concurrent Engineering Context2016Ingår i: Proceedings of the DESIGN 2016 14th International Design Conference, Dubrovnik, May 16-19, 2016. / [ed] Marjanović, D., Štorga, M., Pavković, N., Bojčetić, N., Škec, S., The Design Society, 2016, s. 649-658Konferensbidrag (Refereegranskat)
    Abstract [en]

    Set-based concurrent engineering (SBCE) has been pointed out as a means of enabling customisation and easy adaptation to fluctuating requirements. A feature and script based automation method of Finite Element Analysis has been proposed and developed by [Johansson, 2014] to help support SBCE. This article presents an assessment of the purposed method with respect to its industrial need, scientific novelty, and further work required. Outcomes of which include a new CAD-model tagging technique, positive industrial feedback and further work suggestions.

  • 4.
    Heikkinen, Tim
    et al.
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Produktutveckling. Högskolan i Jönköping, Tekniska Högskolan, JTH. Forskningsmiljö Produktutveckling - Datorstödd konstruktion.
    Johansson, Joel
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Produktutveckling. Högskolan i Jönköping, Tekniska Högskolan, JTH. Forskningsmiljö Produktutveckling - Datorstödd konstruktion.
    Elgh, Fredrik
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Produktutveckling. Högskolan i Jönköping, Tekniska Högskolan, JTH. Forskningsmiljö Produktutveckling - Datorstödd konstruktion.
    Extended CAD-models – State of Practice within Three Companies2017Ingår i: IEEM2017, International Conference on Industrial Engineering and Engineering Management, 10-13 December, 2017, Singapore, IEEE, 2017, s. 1089-1093Konferensbidrag (Refereegranskat)
    Abstract [en]

    Product platforms and product family design have been recognized as successful methods to enable masscustomization strategies. However, companies working with products where pre-defined product variants are not feasible require a more generic platform with re-usable components as well as engineering resources. Extended CAD-models is an approach where CAD-models are utilized as carriers of information to support re-usability of both geometric content and engineering activities, decreasing product development lead-time and enabling the definition of a product family within Engineer-To-Order business contexts. The following paper presents the approach in more detail and the results of a multi-case study where three Swedish industrial companies were interviewed. Results show that all companies store information within the CAD-models to support re-usability. Several challenges were expressed such as managing responsibilities and modeling flexible CAD-models. Future trends involve the concept, but to which extent is not clear.

  • 5.
    Heikkinen, Tim
    et al.
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Industriell produktutveckling, produktion och design.
    Johansson, Joel
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Industriell produktutveckling, produktion och design.
    Elgh, Fredrik
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Industriell produktutveckling, produktion och design.
    Extended design assets enabling automated tool development as a part of a product platform approach2018Ingår i: DS92: Proceedings of the DESIGN 2018 15th International Design Conference / [ed] Marjanović D., Štorga M., Škec S., Bojčetić N., Pavković N., The Design Society, 2018, s. 757-768Konferensbidrag (Refereegranskat)
    Abstract [en]

    Product platform development is a well-established approach for reusing product knowledge in the form of geometry and its configuration rules and constraints. Explicitly defining all platform components is not always possible however. This is why a product platform approach where the processes of realising platform components also are supported is needed, instead of exclusively relying on their results. The work presented here works toward this, with a focus on automated tool development enabled by extending design assets from different tools.

  • 6.
    Heikkinen, Tim
    et al.
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Produktutveckling. Högskolan i Jönköping, Tekniska Högskolan, JTH. Forskningsmiljö Produktutveckling - Datorstödd konstruktion.
    Johansson, Joel
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Produktutveckling. Högskolan i Jönköping, Tekniska Högskolan, JTH. Forskningsmiljö Produktutveckling - Datorstödd konstruktion.
    Elgh, Fredrik
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Produktutveckling. Högskolan i Jönköping, Tekniska Högskolan, JTH. Forskningsmiljö Produktutveckling - Datorstödd konstruktion.
    Multidisciplinary design automation – A conceptual framework for working with product model extensionsManuskript (preprint) (Övrigt vetenskapligt)
  • 7.
    Heikkinen, Tim
    et al.
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Produktutveckling. Högskolan i Jönköping, Tekniska Högskolan, JTH. Forskningsmiljö Produktutveckling - Datorstödd konstruktion.
    Johansson, Joel
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Produktutveckling. Högskolan i Jönköping, Tekniska Högskolan, JTH. Forskningsmiljö Produktutveckling - Datorstödd konstruktion.
    Elgh, Fredrik
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Produktutveckling. Högskolan i Jönköping, Tekniska Högskolan, JTH. Forskningsmiljö Produktutveckling - Datorstödd konstruktion.
    Review of CAD-model Capabilities and Restrictions for Multidisciplinary use2017Ingår i: Proceedings of CAD'17, CAD Solutions , 2017, s. 337-341Konferensbidrag (Refereegranskat)
    Abstract [en]

    Product development is an iterative process, partially due to changes in both company internal and external product requirements, resulting in changes to the product under development. These changes might require recapitulation of design rationale and result in re-doing assessments and syntheses of different kinds. One way to support this work is to proactively model in such a way that as much as possible of the previous work can be re-used. Modelling for re-use can be done by documenting design rationale and formalising performed activities as design guidelines or computer scripts. To be able to find and effectively re-use design activities, the added support could be attached to or otherwise linked to the product features they relate to. This paper focuses on the native CAD-models which also has been utilized by others as carriers of information for different purposes. For instance, describes the use of annotations on CAD-models, an example is presented where both FEM and CAM specifics were added to the geometry enabling automatic FEA and blank casting geometry creation. The approach was later used to support both constraint based redesign activities and encapsulation of in-development/in-service information for throughout product lifecycle retrieval. 

  • 8.
    Heikkinen, Tim
    et al.
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Industriell produktutveckling, produktion och design.
    Johansson, Joel
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Industriell produktutveckling, produktion och design.
    Elgh, Fredrik
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Industriell produktutveckling, produktion och design.
    Review of CAD-model Capabilities and Restrictions for Multidisciplinary use2018Ingår i: Computer-Aided Design and Applications, ISSN 1686-4360, Vol. 15, nr 4, s. 509-519Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Product development is an iterative process, partially due to changes in both company internal and external product requirements, resulting in changes to the product under development. These changes might require recapitulation of design rationale and result in re-doing assessments and syntheses of different kinds. One way to support this work is to proactively model in such a way that as much as possible of the previous work can be re-used. Not only within one product development project but also across and to future ones. Modelling for re-use can be done by documenting design rationale and formalising performed activities as design guidelines or computer scripts. To be able to find and re-use this information it could be attached to the product features which it relates to. Since geometry is such a core product characteristic, especially within the mechanical industry, and is often modelled as CAD-models, this paper presents a review of CAD-model capabilities and restrictions to serve as a carrier of multidisciplinary information. This is done by; enquiring three Swedish companies, exploring an automated Finite Element Analysis method utilising the CAD-model as a carrier of information, and reviewing different CAD software capabilities. Results show that there are at least seven extension techniques, out of which all are currently being used or considered to be in the future, by at least one company. Further, depending on the extension technique, extendibility and human-comprehension of the added information differ.

  • 9.
    Heikkinen, Tim
    et al.
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Industriell produktutveckling, produktion och design.
    Stolt, Roland
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Industriell produktutveckling, produktion och design.
    Elgh, Fredrik
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Industriell produktutveckling, produktion och design.
    Incorporating Design for Additive Manufacturing in Multidisciplinary Design Automation – Challenges Identified2019Ingår i: Proceedings of CAD'19, 2019, s. 372-376Konferensbidrag (Refereegranskat)
  • 10.
    Heikkinen, Tim
    et al.
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Industriell produktutveckling, produktion och design.
    Stolt, Roland
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Industriell produktutveckling, produktion och design.
    Elgh, Fredrik
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Industriell produktutveckling, produktion och design.
    Incorporating Design for Additive Manufacturing in Multidisciplinary Design Automation – Challenges Identified2020Ingår i: Computer-Aided Design and Applications, ISSN 1686-4360, Vol. 17, nr 5, s. 936-947Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    One interesting method to take advantage of the particular capabilities of Additive Manufacturing is to utilize a combination of lattice-structures and topology optimization. This paper presents the results and experiences from attempting to incorporate these in an existing multidisciplinary design automation system within the aerospace industry. A combined state of art and practice is outlined with discussions regarding challenges in current commercial CAD tools, multidisciplinary design automation, and with respect to aerospace requirements.

  • 11.
    Heikkinen, Tim
    et al.
    Högskolan i Jönköping, Tekniska Högskolan, JTH. Forskningsmiljö Produktutveckling - Datorstödd konstruktion. Högskolan i Jönköping, Tekniska Högskolan, JTH, Produktutveckling.
    Stolt, Roland
    Högskolan i Jönköping, Tekniska Högskolan, JTH. Forskningsmiljö Produktutveckling - Datorstödd konstruktion. Högskolan i Jönköping, Tekniska Högskolan, JTH, Produktutveckling.
    Elgh, Fredrik
    Högskolan i Jönköping, Tekniska Högskolan, JTH. Forskningsmiljö Produktutveckling - Datorstödd konstruktion. Högskolan i Jönköping, Tekniska Högskolan, JTH, Produktutveckling.
    Andersson, Petter
    GKN Aerospace Sweden.
    Automated Producibility Assessment Enabling Set-Based Concurrent Engineering2016Ingår i: Transdisciplinary Engineering: Crossing Boundaries / [ed] Milton Borsato, Nel Wognum, Margherita Peruzzini, Josip Stjepandić and Wim J.C. Verhagen, IOS Press, 2016, s. 947-956Konferensbidrag (Refereegranskat)
    Abstract [en]

    The aero-engine industry is continuously faced with new challenging cost and environmental requirements. This forces company's, active in the industry, to work toward more fuel efficient engines with less environmental impact at a lower cost. This paper presents a method for assessing producibility of large sets of components within aircraft engines to enable a Set-Based Concurrent Engineering development approach. A prototype system has been developed aimed at enabling weldability analysis at a sub-supplier within the aero-engine industry. It is a part of a multi-objective decision support tool used in early design stages. The tool produces sets of CAD-models reaching the hundreds for different analyses, mainly focusing on performance aspects within structural analysis, aerodynamics and thermodynamics.

  • 12.
    Stolt, Roland
    et al.
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Industriell produktutveckling, produktion och design.
    Elgh, Fredrik
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Industriell produktutveckling, produktion och design.
    Heikkinen, Tim
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Industriell produktutveckling, produktion och design.
    Design and Evaluation of Aerospace Components for SLM2019Ingår i: Transdisciplinary engineering for complex socio-technical systems: Proceedings of the 26th ISTE International Conference on Transdisciplinary Engineering, July 30 – August 1, 2019 / [ed] K. Hiekata, B. Moser, M. Inoue, J. Stjepandić & N. Wognum, Amsterdam: IOS Press, 2019, s. 147-156Konferensbidrag (Refereegranskat)
    Abstract [en]

    Currently, the additive manufacturing process SLM (selective laser melting) is of high interest in the aerospace industry for the manufacture of jet engine components. This is driven by several factors such as reducing weight and minimizing the variation in the manufacturing process. In the paper, the state of practice in designing SLM parts is examined showing that there is plenty of opportunity to adapt designs to the process. However, this is often too time consuming in the early stages. By examining the state of art in SLM part design, the paper and identifies the variant specific cost drives that are proposed to be used to rank the manufacturability of different design alternatives for turbine frame aerospace components.

  • 13.
    Stolt, Roland
    et al.
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Industriell produktutveckling, produktion och design.
    Heikkinen, Tim
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Industriell produktutveckling, produktion och design.
    Elgh, Fredrik
    Högskolan i Jönköping, Tekniska Högskolan, JTH, Industriell produktutveckling, produktion och design.
    Integrating Additive Manufacturing in the Design of Aerospace Components2018Ingår i: Transdisciplinary Engineering Methods for Social Innovation of Industry 4.0: Proceedings of the 25th ISPE Inc. International Conference on Transdisciplinary Engineering / [ed] Margherita Peruzzini, Marcello Pellicciari, Cees Bil, Josip Stjepandić, Nel Wognum, IOS Press, 2018, s. 145-154Konferensbidrag (Refereegranskat)
    Abstract [en]

    In the aerospace industry, Additive Manufacturing (AM) is quickly gaining ground. When optimizing the design of an AM component, all life-cycle aspects need to be considered. It is by no means limited to the classic weight / stiffness optimization of the topology alone. The AM component design must comply with an array of requirements on for example assembly, maintenance and inspection. In addition, there are the manufacturability requirements and constraints of the printing procedure itself, including component orientation and support structures. In this paper, a proposal on how to integrate the AM design of components with the design of the complete engine structure is presented. To find how the current design process is conducted, an interview study involving design and manufacturing experts has been made at an aerospace company, forming a base for the proposal. The result is that a primary design procedure for the AM component must be made as a separate step involving a limited set of design considerations prior to making a multidisciplinary evaluation of the proposed engine structure.

  • 14.
    Stolt, Roland
    et al.
    Högskolan i Jönköping, Tekniska Högskolan, JTH. Forskningsmiljö Produktutveckling - Datorstödd konstruktion. Högskolan i Jönköping, Tekniska Högskolan, JTH, Produktutveckling.
    Johansson, Joel
    Högskolan i Jönköping, Tekniska Högskolan, JTH. Forskningsmiljö Produktutveckling - Datorstödd konstruktion. Högskolan i Jönköping, Tekniska Högskolan, JTH, Produktutveckling.
    André, Samuel
    Högskolan i Jönköping, Tekniska Högskolan, JTH. Forskningsmiljö Produktutveckling - Datorstödd konstruktion. Högskolan i Jönköping, Tekniska Högskolan, JTH, Produktutveckling.
    Heikkinen, Tim
    Högskolan i Jönköping, Tekniska Högskolan, JTH. Forskningsmiljö Produktutveckling - Datorstödd konstruktion. Högskolan i Jönköping, Tekniska Högskolan, JTH, Produktutveckling.
    Elgh, Fredrik
    Högskolan i Jönköping, Tekniska Högskolan, JTH. Forskningsmiljö Produktutveckling - Datorstödd konstruktion. Högskolan i Jönköping, Tekniska Högskolan, JTH, Produktutveckling.
    How to Challenge Fluctuating Requirements: Results from Three Companies2016Ingår i: Transdisciplinary Engineering: Crossing Boundaries / [ed] Milton Borsato, Nel Wognum, Margherita Peruzzini, Josip Stjepandić and Wim J.C. Verhagen, IOS Press, 2016, s. 1061-1070Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper presents the results from a research project conducted by the research group Computer Supported Engineering Design (CSED) in Jonkoping University in Sweden. The project has the aim of increasing companies’ ability to respond to fluctuating requirements when developing new products and product variants. The companies participating in the project represents automotive, aerospace and production equipment industries. Three different cases of applications have been developed and implemented in the companies. Product models ranging from product to knowledge centered for use in the company’s product and technology platforms have been demonstrated and evaluated though interviews with professionals at the companies. To summarize, the results shows that the companies’ abilities to respond to fluctuating requirements have increased albeit concerns have been raised on the maintenance of knowledge in the implementations.

1 - 14 av 14
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf