Change search
Refine search result
12 1 - 50 of 53
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ahmadkhaniha, Donya
    et al.
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Eriksson, Fredrik
    Linkopings universitet, Department of Physics, Linkoping, Sweden.
    Leisner, Peter
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing. RISE Research Institute of Sweden, Borås, Sweden.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Effect of SiC particle size and heat-treatment on microhardness and corrosion resistance of NiP electrodeposited coatings2018In: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 769, p. 1080-1087Article in journal (Refereed)
    Abstract [en]

    Electrodeposition of NiP composite coatings with nano and sub-micron sized SiC has been carried out to investigate the possibility of replacing hard chromium coatings. The composition and structure of the coatings were evaluated by energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) analysis, respectively. Microhardness was measured by Vickers indentation and polarization measurements were carried out to study the corrosion behavior of the coatings. The results showed that submicron particles can be codeposited with a higher content as compared to nano sized ones. However, even if a smaller amount of the nano-sized SiC particles are incorporated in the coating, the contribution to an increasing microhardness was comparable with the submicron sized particles, which can be related to the higher density of codeposited particles. SiC particles did not change the anodic polarization behavior of NiP coatings in a 3.5% NaCl solution. Finally, the effect of heat-treatment on the coatings properties at 400 °C for 1 h was studied to investigate the contribution of particles and heat-treatment on hardness and corrosion properties. It was found that the heat-treatment doubled the microhardness and changed the anodic polarization behavior of the coatings from passive to active with respect to the as-plated conditions.

    The full text will be freely available from 2020-08-04 00:00
  • 2.
    Ahmadkhaniha, Donya
    et al.
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Huang, Y.
    University of Southampton, Southampton, UK.
    Jaskari, M.
    University of Oulu, Nivala, Finland.
    Järvenpää, A.
    University of Oulu, Nivala, Finland.
    Heydarzadeh Sohi, M.
    University of Tehran, Tehran, Iran.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Karjalainen, L.P.
    University of Oulu, Oulu, Finland.
    Langdon, T.G.
    University of Southampton, Southampton, UK..
    Effect of high-pressure torsion on microstructure, mechanical properties and corrosion resistance of cast pure Mg2017Conference paper (Refereed)
    Abstract [en]

    High-pressure torsion (HPT) processing was applied to cast pure Mg pieces and its effects on microstructure, hardness and tensile properties as well as corrosion resistance were evaluated. The microstructure of the processed samples was examined by electron backscatter diffraction (EBSD) and the mechanical properties were determined by microhardness and tensile tests. Corrosion resistance of the samples was studied via electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. The results showed that HPT refined the grain size of Mg very effectively from millimeters in the cast structure to a few micrometers homogeneously through the thickness and created a basal texture on the surface. One or five turns of HPT produced no significant difference in the grain size of the processed Mg but the hardness was a maximum after one turn. The yield strength of the cast Mg was increased by seven times whereas the corrosion resistance was not affected by the HPT processing.

  • 3.
    Ahmadkhaniha, Donya
    et al.
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Huang, Yi
    Materials Research Group, Department of Mechanical Engineering, University of Southampton, Southampton, United Kingdom.
    Jaskari, Matias
    Kerttu Saalasti Institute, University of Oulu, Nivala, Finland.
    Järvenpää, Antti
    Kerttu Saalasti Institute, University of Oulu, Nivala, Finland.
    Sohi, Mahmoud Heydarzadeh
    School of Metallurgy and Materials, College of Engineering, University of Tehran, Tehran, Iran.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Karjalainen, L. Pentti
    Centre for Advanced Steels Research, University of Oulu, Oulu, Finland.
    Langdon, Terence G.
    Materials Research Group, Department of Mechanical Engineering, University of Southampton, Southampton, United Kingdom.
    Effect of high-pressure torsion on microstructure, mechanical properties and corrosion resistance of cast pure Mg2018In: Journal of Materials Science, ISSN 0022-2461, E-ISSN 1573-4803, Vol. 53, no 24, p. 16585-16597Article in journal (Refereed)
    Abstract [en]

    High-pressure torsion (HPT) processing was applied to cast pure magnesium, and the effects of the deformation on the microstructure, hardness, tensile properties and corrosion resistance were evaluated. The microstructures of the processed samples were examined by electron backscatter diffraction, and the mechanical properties were determined by Vickers hardness and tensile testing. The corrosion resistance was studied using electrochemical impedance spectroscopy in a 3.5% NaCl solution. The results show that HPT processing effectively refines the grain size of Mg from millimeters in the cast structure to a few micrometers after processing and also creates a basal texture on the surface. It was found that one or five turns of HPT produced no significant difference in the grain size of the processed Mg and the hardness was a maximum after one turn due to recovery in some grains. Measurements showed that the yield strength of the cast Mg increased by about seven times whereas the corrosion resistance was not significantly affected by the HPT processing. 

    Download full text (pdf)
    Fulltext
  • 4.
    Ahmadkhaniha, Donya
    et al.
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Pinate, Santiago
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Leisner, Peter
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing. RISE Research Institute of Sweden, Borås.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Electrodeposition of Ni high P composite coatings containing nano and submicro ceramic particles2017Conference paper (Other academic)
    Abstract [en]

    In this study, electrodeposition of Ni-P composite coatings has been carried out to investigate the possibility of replacing hard chromium coatings. Therefore, electrodeposition of Ni-P based composite coating with different SiC particle size (50 nm, 100 nm and 500 nm) or B4C (500 nm) was performed. The coating’s composition was evaluated by energy dispersive spectroscopy (EDS), microhardness of the coatings was measured by Vickers indentor and polarization measurements were carried out to study the corrosion behavior of the coatings. The results showed that B4C particles can codeposit in higher percent respect to SiC ones. Ceramic particles increased microhardness of Ni-P coatings to 700HV0.01. The polarization behavior of all the coatings in 3.5% NaCl was similar in as plated state proving that particles did not hindered the passive behaviour. Finally, the effect of heat-treatment (at 400 ºC for 1 hour) on the coating’s properties was studied to compare the contribution of particles and heat-treatment on mechanical and corrosion properties of the coatings. Heat-treatment increased the coating’s microhardness and changed the anodic polarization behavior of the coatings respect to the as plated conditions.

  • 5.
    Ahmadkhaniha, Donya
    et al.
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    The effects of additives, particles load and current density on codeposition of SiC particles in NiP nanocomposite coatings2019In: Coatings, ISSN 2079-6412, Vol. 9, no 9, article id 554Article in journal (Refereed)
    Abstract [en]

    In this study, electrodeposition of NiP composite coatings with the addition of SiC 100 nm was carried out on low carbon steel studying the effect of additives (sodium dodecyl sulfate, saccharin), particles load (10 or 20 g/L) and current density (1, 2 and 4 A/dm2). As a benchmark, coatings from an additive-free bath were also deposited, despite additives being essential for a good quality of the coatings. The coating's morphology and composition were evaluated by scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS). It was shown that by addition of sodium dodecyl sulfate (SDS), pure NiP coating with a higher P content was achieved, and their morphology changed to nodular. SDS also reduced the codeposited fraction of SiC particles, while saccharin increased it. SiC loading and current density had less impact respect to the additives on codeposition of SiC particles. Finally, the microhardness of NiP coatings did not increase linearly by codeposition of SiC particles. 

  • 6.
    Belov, Ilja
    et al.
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Edström, Curt
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Leisner, Peter
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Finite element modeling of silver electrodeposition for evaluation of thickness distribution on complex geometries2016In: Materials & design, ISSN 0264-1275, E-ISSN 1873-4197, Vol. 90, p. 693-703Article in journal (Refereed)
    Abstract [en]

    The paper reveals benefits of multi-disciplinary computer simulation and parametric studies in the design of silver plating process for improved coating distribution. A finite element model of direct current silver plating is experimentally validated for an Assaf panel without agitation. The model combines tertiary current distribution with Butler–Volmer electrode kinetics and computational fluid dynamics at a very low flow-rate. The effect of charge transfer coefficients on the throwing power of the process is quantified for the studied geometry, and variation of cathodic current density and exchange current density is investigated. A simpler model based on secondary current distribution is employed to quantify the effect of electrolyte conductivity on the throwing power of the process. A model combining tertiary current distribution and computational fluid dynamics has been developed and experimentally validated for simulation of complex telecom component electroplating in agitated electrolyte. The effect of current density on the process throwing power is quantified. Recommendations regarding modeling methodology and the effect of electrochemical and process parameters on the thickness distribution have been developed.

  • 7.
    Belov, Ilja
    et al.
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Edström, Curt
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Leisner, Peter
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Simulation based investigation of silver plating process parameters and their effect on throwing power2015In: International Conference EAST Forum 2015, Lund, June 25-26, 2015., 2015Conference paper (Refereed)
  • 8. Deflorian, F.
    et al.
    Rossi, S.
    Fedel, M.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Ambrosi, D.
    Hlede, E.
    Crevice corrosion study in marine environment of different materials for propulsion applications2014In: Proceedings of 19th Int. Corrosion Congress, Nov. 2-6, 2014, Jeju, Korea, 2014Conference paper (Refereed)
  • 9.
    Deflorian, F.
    et al.
    University of Trento.
    Rossi, S.
    University of Trento.
    Zanella, Caterina
    University of Trento.
    Fedel, M.
    University of Trento.
    Stress corrosion cracking (SCC) failure in marine areas of fixed guards for climbing2015In: Corrosion Engineering, Science and Technology, ISSN 1478-422X, E-ISSN 1743-2782, Vol. 50, no 6, p. 462-466Article in journal (Refereed)
    Abstract [en]

    This work studies the particular mechanism of environmental stress corrosion cracking (SCC) that has been described to interest stainless steel products, like climbing anchors, installed in sea areas. The failure analysis of several broken anchors was carried out. The samples were collected in different parts of the world, always from climbing structures close to the sea. The analysis confirmed the stress corrosion mechanism of degradation, giving also important information about the specific environments causing the metal fracture. These results are in agreement with a few previous works about this subject and are in the frame of the larger topic of SCC of austenitic stainless steel at room temperature. Moreover, some corrosion tests were carried out on stainless steel samples simulating the operation conditions, after contamination with electrolytes at different concentration. The tests are performed in order to better understand the degradation mechanism and to evaluate the influence of some environmental parameters over the susceptibility to SCC. With these experimental data, a possible interpretation model has been proposed together with some reasonable solutions for the material selection process, considering the problem's characteristics and the multiple alternatives available nowadays for climbing materials.

  • 10.
    Eslami, M.
    et al.
    Univ Trento, Dept Ind Engn, Trento, Italy.
    Speranza, G.
    FBK, Ctr Mat & Microsyst, Trento, Italy.
    Deflorian, F.
    Univ Trento, Dept Ind Engn, Trento, Italy.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Polypyrrole coatings on rheocast aluminum-silicon alloy: A correlation between properties and electrodeposition conditions2019In: Surface and Interface Analysis, ISSN 0142-2421, E-ISSN 1096-9918Article in journal (Refereed)
    Abstract [en]

    The effect of the electrolyte composition and the deposition potential range on the physical properties and possible corrosion protection effect of polypyrrole coatings on rheocast aluminum–2.5 % silicon alloy is investigated. Solutions with different concentrations of sodium nitrate and an electron transfer mediator reagent were used for the electrodeposition. Polypyrrole coating is able to hinder the entrance of electrolyte. Upon the penetration of chloride ions, the coating can induce passivation of the alloy's surface by its reduction. The thickness of the coating and its ion-barrier properties, controlled by the electrodeposition conditions, are shown as the important factors influencing the protection efficiency. However, localized drastic galvanic coupling at the polypyrrole/aluminum interface forms blisters, causes failure, and limits the possible protection.

    The full text will be freely available from 2020-11-11 00:00
  • 11.
    Eslami, Maryam
    et al.
    Department of Industrial Engineering, University of Trento, Italy.
    Deflorian, Flavio
    Department of Industrial Engineering, University of Trento, Italy.
    Fedel, Michele
    Department of Industrial Engineering, University of Trento, Italy.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Ce-based conversion coatings on Rheo-HPDC low Si content aluminium alloy2017In: EUROCORR 2017 - The Annual Congress of the European Federation of Corrosion, 20th International Corrosion Congress and Process Safety Congress 2017, Asociace koroznich inzenyru z.s.- AKI - Czech Association of Corrosion Engineers , 2017, p. 777-794Conference paper (Refereed)
    Abstract [en]

    Cerium-based conversion coatings have been considered as an effective alternative to hazardous and carcinogenic chromate-based coatings used in the treatment of metal surfaces such as aluminium alloys. However, there is still considerable debate over the mechanism by which these coatings are formed on different alloys and microstructure features. In the current work, Ce-based conversion coatings were deposited on Rheo-HPDC Al-Si alloys by immersion in water-based solutions of cerium nitrate. Effect of deposition parameters including immersion time and Ce(NO3)3.6H2O concentration on the corrosion resistance and the morphology of coatings was investigated. In addition in some experiments, NaCl was added to the cerium based solution in order to accelerate the deposition of the conversion coating and also to understand the coating formation mechanism. Electrochemical behaviour of the treated aluminium alloys was evaluated in the solution of 0.05 mol/L NaCl using polarization test and electrochemical impedance spectroscopy (EIS) measurements. The morphology and distribution of the cerium-based conversion coatings on the aluminium alloys were studied using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDXS) and X-ray photoelectron spectroscopy (XPS). Conversion treated substrates in all solutions were shown to possess improved corrosion resistance in comparison to the untreated samples. Immersion time and Ce(NO3)3.6H2O concentration slightly affect the deposition and the passivation capability of the cerium hydroxide/oxide layers. SEM images revealed that the deposition of cerium is more favoured in some cathodic areas including iron-based intermetallics and/or eutectic silicon phase. This phenomenon helps to block the active interfaces between these cathodic sites and the aluminium matrix, which is prone to localized corrosion in chloride ion containing environments. 

  • 12.
    Eslami, Maryam
    et al.
    Univ Trento, Dept Ind Engn, Trento, Italy.
    Deflorian, Flavio
    Univ Trento, Dept Ind Engn, Trento, Italy.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Electrochemical Behavior of Conventional and Rheo-High-Pressure Die Cast Low Silicon Aluminum Alloys in NaCl Solutions2019In: Corrosion, ISSN 0010-9312, E-ISSN 1938-159X, Vol. 75, no 11, p. 1339-1353Article in journal (Refereed)
    Abstract [en]

    The electrochemical behavior of a low silicon aluminum alloy cast by the conventional and rheo-high-pressure die cast processes is evaluated using polarization test and electrochemical impedance spectroscopy in 0.01 M, 0.05 M, 0.1 M, and 0.6 M sodium chloride solutions. Compared to the conventional high-pressure die cast process, rheocasting introduces some alterations in the microstructure including the presence of aluminum grains with different sizes, formed at different solidification stages. According to the results of the anodic polarization test, conventional cast and rheocast samples show similar breakdown potentials. However, the rheocast samples present enhanced oxygen reduction kinetics compared to the conventional cast sample. Based on scanning electron microscopy examinations, localized microgalvanic corrosion is the main corrosion mechanism for both alloys and it initiates at the interface of aluminum with iron-rich intermetallic particles which are located inside the eutectic regions. The corrosion further develops into the eutectic area. Although the rate of the cathodic reaction can be influenced by the semisolid microstructure, according to the results of anodic polarization and electrochemical impedance spectroscopy tests, the corrosion behavior is not meaningfully affected by the casting process.

    Download full text (pdf)
    Fulltext
  • 13.
    Eslami, Maryam
    et al.
    Department of Industrial Engineering, University of Trento, Trento, Italy.
    Deflorian, Flavio
    Department of Industrial Engineering, University of Trento, Trento, Italy.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Electrochemical performance of polypyrrole coatings electrodeposited on rheocast aluminum-silicon components2019In: Progress in organic coatings, ISSN 0300-9440, E-ISSN 1873-331X, Vol. 137, article id 105307Article in journal (Refereed)
    Abstract [en]

    Electropolymerization of polypyrrole coatings in the presence and absence of sodium nitrate was applied on rheo-cast Al-4.5% Si alloy and pure aluminum. The results showed that the eutectic silicon phase and intermetallic particles in the alloy's microstructure increase the electrodeposition rate in comparison to the pure aluminum substrate. The electrochemical and microstructural studies show that the polypyrrole coatings are able to protect the surface due to the barrier properties and the passivation protection provided by the reduction of the conductive polymer. The coating electrodeposited from sodium nitrate-containing electrolyte presented improved protection for longer immersion time. Localized formation of a thick oxide layer as a result of the drastic galvanic coupling at the polypyrrole/aluminum interface leads to blister formation and failure of the coating. It was revealed that the coating could be deposited into the porosities produced by the casting related defects, but in most cases, this affects the corrosion protection leading to imminent failure.

    The full text will be freely available from 2021-12-01 00:00
  • 14.
    Eslami, Maryam
    et al.
    Department of Industrial Engineering, University of Trento, Italy.
    Fedel, Michele
    Department of Industrial Engineering, University of Trento, Italy.
    Speranza, Giorgio
    Center for Materials and Microsystems, Bruno Kessler Foundation (FBK), Italy.
    Deflorian, Flavio
    Department of Industrial Engineering, University of Trento, Italy.
    Andersson, Nils-Eric
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Study of selective deposition mechanism of cerium-based conversion coating on Rheo-HPDC aluminium-silicon alloys2017In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 255, p. 449-462Article in journal (Refereed)
    Abstract [en]

    Cerium-based conversion coatings were deposited on Rheo-High Pressure Die Cast (HPDC) Al-Si alloys by immersion in cerium nitrate aqueous solutions. Rheocast Al-Si alloys have a heterogeneous microstructure and present a challenge for the conversion treatment. Different parameters were studied to optimize the conversion coating, and NaCl or H2O2 were also added to the solution to modify or accelerate the deposition process. The mechanism of the coating formation was studied by means of focused ion beam milling (FIB) assisted SEM. The results show that applying cerium-based conversion coating to Al-Si alloys, is possible and a preferential deposition is obtained due to the presence of iron-rich intermetallic particles inside the eutectic region. The formation mechanism of selectively deposited cerium-based conversion coating includes dissolution of aluminium matrix, selective dissolution of aluminium from the noble intermetallic particles, oxidation of iron from the intermetallic particles, and the deposition of cerium hydroxide/oxide layer. The results reveal that the improvement in corrosion resistance in the presence of selectively deposited cerium-based conversion coating is more significant compared to the homogenous coating deposited from the conversion solution containing H2O2. 

    Download full text (pdf)
    fulltext
  • 15.
    Eslami, Maryam
    et al.
    Department of Industrial Engineering, University of Trento, Italy.
    Fedel, Michele
    Department of Industrial Engineering, University of Trento, Italy.
    Speranza, Giorgio
    Center for Materials and Microsystems, Bruno Kessler Foundation (FBK), Trento, Italy.
    Deflorian, Flavio
    Department of Industrial Engineering, University of Trento, Italy.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Deposition and Characterization of Cerium-Based Conversion Coating on HPDC Low Si Content Aluminum Alloy2017In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 164, no 9, p. C581-C590Article in journal (Refereed)
    Abstract [en]

    Cerium-based conversion coatings were deposited on high pressure die cast (HPDC) Al-Si alloys using an immersion method. Hydrogen peroxide and sodium chloride were added to the conversion solution to accelerate the coating formation and to understand its formation mechanism. These studies showed that the deposition of cerium hydroxide/ oxide conversion layer starts from iron-rich intermetallic particles, which are located inside the eutectic region and then the coating growth continues to cover the entire alloy surface. This phenomenon passivates the active interfaces between iron-rich intermetallic particles and/ or the eutectic silicon phase and the aluminum matrix, which are prone to localized corrosion in chloride ions containing environments. Accordingly, values of the total impedance in EIS measurements significantly increased for the treated substrates. Morphologies of the conversion coatings and the oxidation state of cerium compounds were found to be dependent on the composition of the solution and the presence of chloride ions and/ or hydrogen peroxide. Aluminum alloy with higher silicon content showed a more active surface during immersion in the conversion solution. This makes it more difficult to be treated using aggressive conversion solutions. 

    Download full text (pdf)
    fulltext
  • 16.
    Eslami, Maryam
    et al.
    Department of Industrial Engineering, University of Trento, Trento, Italy.
    Speranza, Giorgio
    Center for Materials and Microsystems, Fondazione Bruno Kessler (FBK), Trento, Italy.
    Fedel, Michele
    Department of Industrial Engineering, University of Trento, Trento, Italy.
    Andersson, Nils-Eric
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Deflorian, Flavio
    Department of Industrial Engineering, University of Trento, Trento, Italy.
    Omanovic, Sasha
    Department of Chemical Engineering, McGill University, Montreal, Canada.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Electropolymerization and possible corrosion protection effect of polypyrrole coatings on AA1050 (UNS A91050) in NaCl solutions2019In: Corrosion, ISSN 0010-9312, E-ISSN 1938-159X, Vol. 75, no 7, p. 745-755Article in journal (Refereed)
    Abstract [en]

    Effect of solution chemistry on the electropolymerization and the electrochemical properties of polypyrrole coatings on aluminum is studied by means of electrochemical techniques, scanning electron microscopy (SEM), and x-ray photoelectron spectroscopy. It is shown that the protection effect of the coating in long-term exposures and when exposed to more concentrated NaCl solutions depends on the chemistry of electropolymerization electrolyte. The results show that nitrate anions passivate the aluminum substrate during the electropolymerization process. The resulting coating is less prone to blistering in a NaCl solution and probably due to its higher electrochemical activity presents a higher anodic protection effect. The galvanic interaction of polypyrrole coating with aluminum in a NaCl solution is directly observed using focused ion beam-assisted SEM.

  • 17. Fedel, M.
    et al.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Rossi, S.
    Al2O3 and AlN atomic layer deposited coatings for the corrosion protection of silver and stainless steel substrates2014In: Proceedings of 28th Int. Conf. on Surface Modification Technologies, 16-18 June, 2014, Tampere, Finland, Tampere University of Technology, 2014Conference paper (Refereed)
  • 18.
    Gracco, Antonio
    et al.
    DDS, Faculty of Dentistry, University of Padua, Padua, Italy.
    Dandrea, Martina
    DDS, Faculty of Dentistry, University of Rome, Rome, Italy.
    Deflorian, Flavio
    Department of Industrial Engineering, University of Trento, Trento, Italy.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing. Department of Industrial Engineering, University of Trento, Trento, Italy.
    De Stefani, Alberto
    DDS, Faculty of Dentistry, University of Padua, Padua, Italy.
    Bruno, Giovanni
    DDS, Faculty of Dentistry, University of Padua, Padua, Italy.
    Stellini, Edoardo
    DDS, Faculty of Dentistry, University of Padua, Padua, Italy.
    Application of a molybdenum and tungsten disulfide coating to improve tribological properties of orthodontic archwires2019In: Nanomaterials, ISSN 2079-4991, Vol. 9, no 5, article id 753Article in journal (Refereed)
    Abstract [en]

    Coatings incorporating nanoparticles of molybdenum and tungsten disulfide (MoS2 and WS2)—known for their lubricating properties—are applied to orthodontic stainless steel wires to verify if there is an improvement in terms of tribological properties during the sliding of the wire along the bracket. To simulate in vitro sliding of the wire along the bracket and evaluate friction 0.019 × 0.025 inches orthodontic stainless steel (SS) wires were subjected to the application, by electrodeposition, of Ni, Ni + MoS2, and Ni + WS2 . The samples produced were analyzed with scanning electron microscopy and assessment of resistance to bending. Thirty-two test conditions have been analyzed, arising from the combination of four types of coatings (SS bare wires and strings with three types of coating), two types of self-ligating bracket (Damon Q, Ormco and In-Ovation R, GAC International), two bracket-wire angles (0◦ and 5◦), two environments (dry and wet). Analyses carried out on the samples show acceptable coatings incorporating MoS2 and WS2 and a resistance of coatings after a minimum bending. In “dry conditions” a statistically significant decrease in friction occurs for wires coated with MoS2 and WS2 if associated with the In-Ovation bracket. In “wet conditions” this decrease is observed only in isolated test conditions. Analysis of the wires after sliding tests show little wear of the applied coatings. Nanoparticles are acceptable and similar in their behavior. Improvements in terms of friction are obtained pairing coatings incorporating MoS2 and WS2 with the In-Ovation bracket in dry conditions. 

  • 19.
    Leisner, Peter
    et al.
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing. RISE Res Inst Sweden, Elect Dept, Borås, Sweden.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Application of Assaf panel for evaluating throwing power of pulse reverse electroplating on complex geometries2018In: Transactions of the Institute of Metal Finishing, ISSN 0020-2967, E-ISSN 1745-9192, Vol. 96, no 5, p. 258-264Article in journal (Refereed)
    Abstract [en]

    The Assaf panel arrangement was used for evaluating pulse reverse plating processes and optimisation of the throwing power (TP) of complex three-dimensional (3D) geometries. Two different electroplating processes were investigated: an acid copper bath and a cyanide silver bath without additives. It has not been possible to establish a direct correlation factor for TP obtained with the Assaf panel and the 3D objects included in the trials. Nevertheless, the Assaf panel was found to be a useful tool for preliminary process parameter optimisation. The copper bath needs agitation to deposit coatings of good quality, whereas the silver bath obtains the best throwing power without agitation. The latter is probably due to inhibition by adsorbed cyanide.

    Download full text (pdf)
    Fulltext
  • 20.
    Leisner, Peter
    et al.
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Elektroplätering av antibakteriella beläggningar2015In: Ytforum, ISSN 0349-4470, no 1, p. 23-Article in journal (Other (popular science, discussion, etc.))
  • 21.
    Leisner, Peter
    et al.
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Introduction to pulse plating2016Conference paper (Refereed)
  • 22.
    Leisner, Peter
    et al.
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Structure modification and process control by pulsed electrodeposition2015In: EUROMAT 2015, Warsaw, Sep. 20-24, 2015., 2015Conference paper (Refereed)
  • 23.
    Leisner, Peter
    et al.
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing. SP Technical Research Institute of Sweden, Borås, Sweden.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Belov, Ilia
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Edström, C.
    SP Technical Research Institute of Sweden, Borås, Sweden.
    Sandulache, G.
    Happy Plating, Wiener Neustadt, Austria.
    Hansal, W. E. G.
    Happy Plating, Wiener Neustadt, Austria.
    Control of silver throwing power by pulse reverse electroplating2017In: Transactions of the Institute of Metal Finishing, ISSN 0020-2967, E-ISSN 1745-9192, Vol. 95, no 1, p. 25-30Article in journal (Refereed)
    Abstract [en]

    The influence of electroplating parameters on throwing power (TP) is studied in additive-free silver cyanide solutions under direct current and pulse reverse electroplating conditions. It is found that the best TP is obtained when no agitation of the electrolyte is applied. The most important parameters for controlling the TP are the cathodic current density, the anodic to cathodic charge ratio, and the ratio between the anodic and cathodic current densities. Guidelines for process optimisation are given.

  • 24.
    Leisner, Peter
    et al.
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Belov, Ilja
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Edström, Curt
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Sandulache, G.
    Hansal, W.
    Influence of pulse reverse plating parameters on throwing power in a silver cyanide bath2016Conference paper (Other academic)
  • 25.
    Leisner, Peter
    et al.
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Belov, Ilja
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Edström, Curt
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Wang, Hui
    Chang Zhou University, China.
    Influence of anodic pulses and periodic current reversion on electrodeposits2014In: Transactions of the Institute of Metal Finishing, ISSN 0020-2967, E-ISSN 1745-9192, Vol. 92, no 6, p. 336-341Article in journal (Refereed)
    Abstract [en]

    This paper discusses how anodic pulses and periodic current reversion influence electrodeposition. Depending on the involved metal and electrolyte, very different effects can be observed and taken advantage of. The Wagner number, Wa, describing the current distribution is shown to be useful for predicting the throwing power at low frequencies of current reversion, even in complex electrochemical systems, but is less useful at higher frequencies. Passivation can occur due to oxide formation, super-saturation of metal salts or depletion of complexing agents at the electrode surface. Furthermore, dissolution and desorption processes in the anodic period can have strong influence on the succeeding cathodic electrocrystallisation affecting preferred crystal orientation, intrinsic stress and current efficiency. A literature survey is combined with experiments from silver plating from a cyanide bath.

  • 26.
    Lekka, M.
    et al.
    University of Udine, Udine, Italy.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Leisner, Peter
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing. RISE Research Institutes of Sweden, Borås, Sweden.
    New European Training Network solving corrosion problems on micro- and nanoscale: mCBEEs2017In: Transactions of the Institute of Metal Finishing, ISSN 0020-2967, E-ISSN 1745-9192, Vol. 95, no 6, p. 297-298Article in journal (Other academic)
    Abstract [en]

    mCBEEs is an acronym for: Advanced integrative solutions to Corrosion problems beyond micro-scale: towards long-term durability of miniaturised Biomedical, Electronic and Energy systems. It is a doctoral student training network funded by the European Commission under the Marie Sklodowska-Curie Action scheme in the same way as the recently reported training network SELECTA that is focusing on smart electrodeposited alloys for environmentally sustainable applications.

    Download full text (pdf)
    Fulltext
  • 27.
    Maryam, Eslami
    et al.
    University of Trento, Italy.
    Payandeh, Mostafa
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Deflorian, Flavio
    University of Trento, Italy.
    Jarfors, Anders E.W.
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Effect of Segregation and Surface Condition on Corrosion of Rheo-HPDC Al–Si Alloys2018In: Metals, Vol. 8, no 4, article id 209Article in journal (Refereed)
    Abstract [en]

    Corrosion properties of two Al–Si alloys processed by Rheo-high pressure die cast (HPDC) method were examined using polarization and electrochemical impedance spectroscopy (EIS) techniques on as-cast and ground surfaces. The effects of the silicon content, transverse and longitudinal macrosegregation on the corrosion resistance of the alloys were determined. Microstructural studies revealed that samples from different positions contain different fractions of solid and liquid parts of the initial slurry. Electrochemical behavior of as-cast, ground surface, and bulk material was shown to be different due to the presence of a segregated skin layer and surface quality.

  • 28. Pavlatou, E.A.
    et al.
    Chrysagis, K.
    Zoikis–Karathanasis, A.
    Rasmussen, J.B.
    Rasmussen, A.A.
    Leisner, Peter
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Gradewald, L.
    Kampakas, N.S.
    Panayiotakopoulos, G.
    SelfClean: Novel Self-cleaning, anti-bacterial coatings, preventing disease transmission on everyday touched surfaces2014Conference paper (Refereed)
  • 29.
    Pinate, Santiago
    et al.
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Eriksson, F.
    Leisner, Peter
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Effects of particles codeposition and ultrasound agitation on the electrocrystallisation of Ni nanocompositesManuscript (preprint) (Other academic)
  • 30.
    Pinate, Santiago
    et al.
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Ispas, A.
    Leisner, Peter
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Bund, A.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Electrocodeposition of Ni composites and surface modification of SiC nanoparticlesManuscript (preprint) (Other academic)
  • 31.
    Pinate, Santiago
    et al.
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Leisner, Peter
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing. RISE Research Institutes of Sweden, Borås, Sweden.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Electrocodeposition of nano-SiC particles by pulse-reverse under an adapted waveform2019In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 166, no 15, p. D804-D809Article in journal (Refereed)
    Abstract [en]

    This work has explored the potential of using pulse reverse (PR) plating for increasing the deposited fraction of SiC nanoparticles. Two PR waveforms were selected, a short pulse (500 Hz) waveform and a newly modified and adapted pulsed sequence that equals the plating thickness to the particles’ diameter (50 nm) for the on-time and half-diameter during the anodic time. The pulse waveforms were designed with 4 and 10 A⋅dm−2 as the average current density and cathodic peak current density, respectively. Direct current (DC) deposits at the same values were also produced as reference. In all cases, the codeposition of nano-SiC particles influenced the microstructure. The electroplating under DC 10 A⋅dm−2 showed the strongest grain refinement and increased the content of the particles (up to 2% vol.) PR using high-frequency achieved a similar codeposition. The maximum particle incorporation was achieved by the proposed adapted pulse waveform, doubling the SiC content produced by other set-ups (up to 4% vol.); increasing the microhardness of the deposits to 400 HV, despite no grain refinement compared to the pure metal. From these results, it was observed a relationship between the influence of the plating method on the microstructure, the particle content, and the material's hardness.

    Download full text (pdf)
    fulltext
  • 32.
    Péter, L.
    et al.
    Wigner Research Centre for Physics, Budapest, Hungary.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Leisner, Peter
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    European training school for young scientists and EAST Forum 20172017In: Transactions of the Institute of Metal Finishing, ISSN 0020-2967, E-ISSN 1745-9192, Vol. 95, no 5, p. 237-238Article in journal (Other academic)
  • 33.
    Rosoiu, Sabrina
    et al.
    Center for Surface Science and Nanotechnology, University POLITEHNICA of Bucharest, Bucharest, Romania.
    Pantazi, Aida
    Center for Surface Science and Nanotechnology, University POLITEHNICA of Bucharest, Bucharest, Romania.
    Petica, Aurora
    Center for Surface Science and Nanotechnology, University POLITEHNICA of Bucharest, Bucharest, Romania.
    Cojocaru, Anca
    Center for Surface Science and Nanotechnology, University POLITEHNICA of Bucharest, Bucharest, Romania.
    Costovici, Stefania
    Center for Surface Science and Nanotechnology, University POLITEHNICA of Bucharest, Bucharest, Romania.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Visan, Teodor
    Center for Surface Science and Nanotechnology, University POLITEHNICA of Bucharest, Bucharest, Romania.
    Anicai, Liana
    Center for Surface Science and Nanotechnology, University POLITEHNICA of Bucharest, Bucharest, Romania.
    Enachescu, Marius
    Center for Surface Science and Nanotechnology, University POLITEHNICA of Bucharest, Bucharest, Romania.
    Comparative Study of Ni-Sn Alloys Electrodeposited from Choline Chloride-Based Ionic Liquids in Direct and Pulsed Current2019In: Coatings, ISSN 2079-6412, Vol. 9, no 12, article id 801Article in journal (Refereed)
    Abstract [en]

    This work presents, for the first time, the electrodeposition of Ni-Sn alloys in pulse current, from deep eutectic solvents (choline chloride: ethylene glycol eutectic mixture). Additionally, in this study, we report a comparison of the electrodeposition methods known as pulse and direct current. The elemental composition of the films, evaluated from EDX, remained almost constant independently on the electrodeposition parameters. The XRD data revealed the presence of the NiSn metastable phase, which has been confirmed by DSC analysis. This phase shows a nanocrystalline structure with crystallite sizes between 12 and 20 nm. The use of pulse current electrodeposition method has led to an improvement of alloys’ mechanical properties. Moreover, by controlling the electrodeposition parameters, we succeeded in tuning the mechanical properties of the coatings prepared through the PC method. We showed that the hardness parameters exhibited by the Ni-Sn alloys are strongly dependent on their crystallite sizes.

  • 34.
    Rossi, S.
    et al.
    University of Trento.
    Parziani, N.
    University of Trento.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology. University of Trento and SP Technical Research Institute of Sweden.
    Abrasion resistance of vitreous enamel coatings in function of frit composition and particles presence2015In: Wear, ISSN 0043-1648, E-ISSN 1873-2577, Vol. 332-333, p. 702-709Article in journal (Refereed)
    Abstract [en]

    Vitreous enamel is an inorganic coating applied on metallic substrates as powder and fired at relatively high temperature in order to cover the surface forming the coating. This kind of layer shows, at the same time, very good functional and aesthetical properties. In several applications, good mechanical resistance together with corrosion protection is required and enamel is a good alternative to other coatings. Enamel presents optimum corrosion protection and high hardness values but the low fracture toughness reduces its resistance to abrasive wear related to brittle fracture. The microstructure of enamel, the chemical composition of the frit, and the deposition parameters are crucial for the final properties. Moreover, it is possible to introduce mill additives in the frit or hard particles inside the layers to improve final resistance. In this paper, abrasion resistance of enamel is tested by Taber Abraser test. Mill additives (spodumene or quartz), hard (WC or SiC) or solid lubricant (graphite) particles have been added to the frit to study their influence on the abrasion resistance. The abrasion resistance of modified enamels was evaluated through mass loss after abrasion and wear track were observed by SEM in order to evaluate the abrasion damage. An improvement of the abrasion resistance was obtained modifying the frit with mill additives. The introduction of SiC and WC particles produced an important modification in wear mechanism of the glassy coating, reducing the crack nucleation due to the low pores quantity and good interface between vitreous matrix and particles. In these cases the wear mechanism is limited to scratches on the surface.

  • 35.
    Sainis, Salil
    et al.
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Influence of size and distribution of intermetallic particles in Al-Si cast alloys on the cerium conversion coating deposition2019In: Electrochem 2019, Glasgow: Abstracts book, 2019, p. 99-99Conference paper (Refereed)
    Abstract [en]

    Aluminium alloys are susceptible to corrosion due to microgalvanic coupling of the Al matrix and intermetallic particles (IMP). Among different protection strategies, conversion coatings can be selectively deposited on more noble sites. Cerium conversion coatings (CeCC) have been proven to inhibit the cathodic reaction by preferentially depositing on the cathodic IMP. Their spontaneous deposition achieved by immersion of aluminium substrate in Ce-ion containing baths is a consequence of the localised pH increase because of oxygen reduction reaction at local cathodic sites of the microstructure. The influence of bath process parameters (like cerium salt type, cerium ion concentration, pH etc.) have been widely investigated primarily on AA2024 and AA7075, but the more general role of microstructure remains to be clearly understood. Due to the localised nature of deposition reactions, the microstrucutre, in the sense of chemical composition, size and distribution of the second phase or IMP play a crucial role in the deposition behaviour. This research investigates the role of IMP size and distribution in the microstructure, i.e. how far or close they are spaced from each other, on the deposition of CeCC. Two model cast Al-7wt.% Si alloys are selected with 2wt.% Cu and 1wt.% Fe respectively. Different IM distribution in the microstructure is achieved by implementing slow and fast cooling rates for solidification of these hypoeutectic Al-Si alloys. CeCC coatings are spontaneously deposited by immersion in cerium chloride salt solutions. Bare metal and CeCC deposited microstructure is characterized with optical microscopy, scanning electron microscopy and energy dispersive x-ray spectroscopy.

  • 36.
    Tsongas, Konstantinos
    et al.
    Center for Research and Technology - Hellas, Thessaloniki, Institute for Bio-Economy and Agri-Technology, Thessaloniki, Greece.
    Tzetzis, Dimitrios
    Center for Research and Technology - Hellas, Thessaloniki, Institute for Bio-Economy and Agri-Technology, Thessaloniki, Greece and School of Science and Technology, International Hellenic University, Thessaloniki, Greece.
    Karantzalis, Alexander
    Center for Research and Technology - Hellas, Thessaloniki, Institute for Bio-Economy and Agri-Technology, Thessaloniki, Greece and Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece.
    Banias, George
    Center for Research and Technology - Hellas, Thessaloniki, Institute for Bio-Economy and Agri-Technology, Thessaloniki, Greece.
    Exarchos, Dimitrios
    Center for Research and Technology - Hellas, Thessaloniki, Institute for Bio-Economy and Agri-Technology, Thessaloniki, Greece.
    Ahmadkhaniha, Donya
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Matikas, Theodore
    Center for Research and Technology - Hellas, Thessaloniki, Institute for Bio-Economy and Agri-Technology, Thessaloniki, Greece and Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece.
    Bochtis, Dionysis
    Center for Research and Technology - Hellas, Thessaloniki, Institute for Bio-Economy and Agri-Technology, Thessaloniki, Greece.
    Microstructural, Surface Topology and Nanomechanical Characterization of Electrodeposited Ni-P/SiC Nanocomposite Coatings2019In: Applied Sciences, E-ISSN 2076-3417, Vol. 9, no 14, article id 2901Article in journal (Refereed)
    Abstract [en]

    In the present study, nickel phosphorous alloys (Ni-P) and Ni-P/ silicon carbide (SiC) nanocomposite coatings were deposited by electrodeposition on steel substrates in order for their microstructural properties to be assessed while using SEM, XRD, and three-dimensional (3D) profilometry as well as nanoindentation. The amorphisation of the as-plated coatings was observed in all cases, whereas subsequent heat treatment induced crystallization and Ni3P intermetallic phase precipitation. Examination of the surface topology revealed that the surface roughness follows the deposition characteristics and heat treatment induced microstructural changes. Additionally, substantial improvements in mechanical properties, including hardness, yield stress, and elasticity modulus, were obtained for the Ni-P, Ni-P/SiC nanocomposites when heat treated as seen from the nanoindentation results. A Finite Element Analysis (FEA) was developed to simulate the nanoindentation tests that enable the precise extraction of the Ni-P and Ni-P/SiC nanocomposite coatings’ stress-strain behavior. It is shown that the correlation between the nanoindentation tests and the computational models was satisfactory, while the stress-strain curves revealed higher yield points for the heat-treated samples.

  • 37.
    Tsoukleris, D. S.
    et al.
    School of Chemical Engineering, National Technical University of Athens.
    Pavlatou, E. A.
    School of Chemical Engineering, National Technical University of Athens.
    Spanou, S.
    School of Chemical Engineering, National Technical University of Athens.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Leisner, Peter
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Novel Self-cleaning, anti-bacterial Sn-Ni electrocoatings of high aesthetics and durability: Abstract s10-0542014In: Book of abstracts of 65th Annual Meeting of the International Society of Electrochemistry, 31/8-5/9 2014, Lausanne, Switzerland: Ubiquitous electrochemistry, 2014, p. 1613-Conference paper (Refereed)
  • 38. Tsoukleris, D.S.
    et al.
    Spanou, S.
    Köhler, S.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Leisner, Peter
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Pavlatou, E.A.
    Study of tribological properties of nickel-based coatings reinforced by TiO2 nanoparticles produced by pulse electrodeposition2014In: Proceedings of the 1st African Congress of Tribology / Tribo Satellite Forum 2014, 24-30/4 2014, Marrakesh, Morocco, 2014Conference paper (Refereed)
  • 39.
    Zanella, Caterina
    et al.
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Leimbach, M.
    Leisner, Peter
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Pulse reverse plating of SnNi2015In: International Conference EAST Forum 2015, Lund, June 25-26, 2015., 2015Conference paper (Refereed)
  • 40.
    Zanella, Caterina
    et al.
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Leisner, Peter
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    A critical review on the use of pulse and pulse reverse plating and their influence on electrodeposition of nanocomposite coatings2016Conference paper (Other academic)
    Abstract [en]

    Application of pulse and reverse plating to the electrodeposition of composite coatings have been adopted in the last decades but the studies were lacking in consistency of experimental approach. No major conclusion were draw on the effect of using pulse or reverse pulse plating on the codeposition of nanoparticles. Pulse plating is characterized by an increased number of variables and therefore is often difficult to understand the relationship between the parameters and the final results and compare or correlate them to available literature data. In this paper a review of major contributions in this field is carried out trying to compare results and to discuss the effect of pulse parameters on the codeposition of nanoparticles focusing on copper and nickel matrixes.

  • 41.
    Zanella, Caterina
    et al.
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Leisner, Peter
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    The 6th European Pulse Plating Seminar2014In: Transactions of the Institute of Metal Finishing, ISSN 0020-2967, E-ISSN 1745-9192, Vol. 92, no 4, p. 178-179Article in journal (Other academic)
    Abstract [en]

    Over the past decade the European Pulse Plating Seminar has been established as the most important event for discussing research and applications of pulse plating. Now it is organised every second year in the area of Vienna by the company Happy Plating. For the past two years it has been co-organised with the European Academy of Surface Technology, EAST. The pulse plating seminars have made it possible to follow how the application of pulse plating has increased and widened during the last decade since the first seminar in 2006.

  • 42.
    Zanella, Caterina
    et al.
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Lekka, Maria
    Polytechnic Department of Engineering and Architecture, University of Udine, Udine, Italy.
    A journey into mCBEEs training, the European training network on corrosion problems at micro- and nanoscale2019In: Transactions of the Institute of Metal Finishing, ISSN 0020-2967, E-ISSN 1745-9192, Vol. 97, no 5, p. 227-229Article in journal (Other academic)
    Abstract [en]

    Training and establishing networks for the future researchers in our field of surface engineering and metal finishing has been a key focus of EAST (European Academy for Surface Technology). Here the authors briefly describe the mCBEE training network, and how it operates. 

    The full text will be freely available from 2020-08-27 00:00
  • 43.
    Zanella, Caterina
    et al.
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing. Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Péter, L.
    Hungarian Academy of Science, Budapest, Hungary.
    Leisner, Peter
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing. Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Promotion of young European scientists in surface technology2016In: Transactions of the Institute of Metal Finishing, ISSN 0020-2967, E-ISSN 1745-9192, Vol. 94, no 4, p. 173-174Article in journal (Refereed)
  • 44.
    Zanella, Caterina
    et al.
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Spanou, Stella
    Pavlatou, E.
    Leisner, Peter
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Functional nanocomposite coatings based on SnNi and TiO22015In: EAST Special Forum, Milano, 1-2/10, 2015., 2015Conference paper (Refereed)
  • 45.
    Zhu, Baiwei
    et al.
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Fedel, Michele
    Department of Industrial Engineering, University of Trento, Trento, Italy.
    Andersson, Nils-Eric
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Leisner, Peter
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing. SP-Technical Research Institute of Sweden, Borås, Sweden.
    Deflorian, Flavio
    Department of Industrial Engineering, University of Trento, Trento, Italy.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Effect of Si content and morphology on corrosion resistance of anodized cast Al-Si alloys2017In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 164, no 7, p. C435-C441Article in journal (Refereed)
    Abstract [en]

    This paper investigates the influence of Si content and Si particle morphology on the corrosion protection of anodized oxide layers on Al-Si alloys. Two Al alloys with low Si concentrations (2.43 wt-% and 5.45 wt-%, respectively) were studied and compared with 6082-T6 via electrochemical impedance spectroscopy (EIS) in 3 wt-% NaCl solution prior to oxide layer sealing. Si particles were also modified by the addition of Sr to study the influence of Si particle morphology on the corrosion protection of the oxide layer. The EIS showed that the corrosion protection provided by the oxide layer on Al-Si alloys is significantly affected by the presence of Si particles. Si particles make the oxide layer locally thinner and more defective in the eutectic region, thereby increasing the ease of substrate corrosion attack. However, the addition of Sr can improve the corrosion protection of anodized Al-Si alloys significantly. Furthermore, it was proved that higher Si level influences negatively the anodized oxide corrosion protection due to the higher amount of cracks and defects, but Sr modification is efficient in preventing this negative effect.

  • 46.
    Zhu, Baiwei
    et al.
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Fedel, Michele
    Department of Industrial Engineering, University of Trento, Trento, Italy.
    Andersson, Nils-Eric
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Leisner, Peter
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing. RISE Research Institute of Sweden, Borås, Sweden.
    Deflorian, Flavio
    Department of Industrial Engineering, University of Trento, Trento, Italy.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Influence of the Sr modification and post-treatment on corrosion resistance of oxide layer of cast Al-(low)Si alloys2017In: EUROCORR 2017 - The Annual Congress of the European Federation of Corrosion, 20th International Corrosion Congress and Process Safety Congress 2017, Asociace koroznich inzenyru z.s.- AKI - Czech Association of Corrosion Engineers , 2017, p. 27-39Conference paper (Refereed)
    Abstract [en]

    The current development of casting process makes it possible to cast low Si content aluminium alloys, which open the gate for the application of anodising on cast aluminium components. This paper aims to investigate the influence of Sr modification as well as the post-treatment on corrosion resistance of oxide layer of low Si content cast Al alloys. In the present study, designed Al-Si alloys with 5.45 wt-% Si were studied by performing electrochemical impedance spectroscopy (EIS) in 3 wt-% NaCl solution. The morphology of Si particle was determined by controlling the level of Sr. The microstructure features were evaluated by optical microscopy and scanning electron microscopy (SEM). Furthermore, focus ion beam-SEM (FIB-SEM) equipped with energy-dispersive X-ray spectroscopy (EDXS) was applied to exam the corrosion morphology and the anodised layer with Si rich eutectic phases. The EIS study revealed that the corrosion resistance of the oxide layer on cast Al alloys can be significantly influenced by the morphology of Si particle and the post-treatment. It was found that the change of Si particle morphology from flake-like to fibrous by Sr addition can substantially improve the corrosion resistance of the oxide layer in the unsealed condition due to the formation of the more compacted oxide layer with less defects. Normally, the application of a sealing step such as the hydrothermal sealing can improve the corrosion protection of the oxide layer. However, in the current study, it was found the hydrothermal sealing step leads to a significant reduce of the corrosion protection due to the generation of cracks into the oxide layer, and the hydrothermal sealing step can counteract the improvement of the corrosion protection by Sr addition.

  • 47.
    Zhu, Baiwei
    et al.
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Leisner, Peter
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology.
    Persson, Per O.Å.
    Linköpings universitet.
    Seifeddine, Salem
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing – Casting.
    Jarfors, Anders E. W.
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing – Casting.
    A study of formation and growth of the anodized surface layer on Al-Si casting alloys based on different analytical techniques2015Conference paper (Refereed)
  • 48.
    Zhu, Baiwei
    et al.
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing – Casting.
    Leisner, Peter
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology. SP-Technical Research Institute of Sweden.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing - Surface technology. SP-Technical Research Institute of Sweden; University of Trento, Dept of Industrial Engineering.
    Persson, Per
    Thin Film Physics Division, Department of Physics, Chemistry and Biology, Linköping University.
    Seifeddine, Salem
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing – Casting.
    Jarfors, Anders E.W.
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing – Casting.
    A study of formation and growth of the anodised surface layer on Al-Si casting alloys based on different analytical techniques2015Conference paper (Refereed)
    Abstract [en]

    One of the major limitations in the application of anodizing of aluminum casting alloys is the non-uniform thickness of the oxide layer. Previous researches have studied the formation of the oxide film during anodizing in detail. These investigations have mainly been limited to aluminum and wrought aluminum alloys, and only a few papers have given some insights about the formation of the oxide layer on cast aluminum alloys. The majority of cast aluminum alloys contains relatively higher amounts of Si and other elements (e.g. Cu and Fe) than wrought alloys. This paper aims to investigate the mechanisms of formation and growth of the anodized surface layer on Al-Si casting alloys by applying different analytical techniques such as optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray computer tomography (X-ray CT) scanning. Three different Al alloys with various Si content (2.4%, 3.5% and 5.5%) were investigated. Si morphological modification by Sr addition, as well as gradient solidification was used to vary the microstructural coarseness in a controlled manner to study the influence of these parameters on the growth of the oxide layer. The microstructure features of the anodized layer and the interface between matrix and the oxide layer were studied, employing optical microscopy (figure 1), and SEM/EDS (figure 2). X-Ray CT-scanning (figure 3) was used to examine the high density phases (Fe and Cu bearing phases) and also to give a 3-D view of the anodized oxide surface. Furthermore, TEM was used to examine the general filming behavior of anodized layer and the local effects associated with Si particles in the matrix.

    It was found that: (i) during anodizing, the oxide front grew around the Si particles and tends to engulf them; (ii) the oxide front grew inwards but did expand in other directions in the eutectic areas; (iii) a scalloped interface between substrate and oxide indicated different anodizing rates in dendrites and eutectic phases. The oxide front was moving faster in the primary dendrite Al-phase than in the eutectic, and the growth rate was particularly slow in larger eutectic areas; (iv) different anodizing rates in dendrite and eutectic phases resulted in thinner layers in specimens with lower SDAS (secondary dendrite arm spacing); and (v) a more uniform layer thickness in Sr-modified specimens illustrates that oxide growth speed was faster in modified eutectic phase. However, diffusion of Si or long distance between Si particles after modification could even results in the adverse situation with a bad anodized surface appearance. 

  • 49.
    Zhu, Baiwei
    et al.
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Santos, Jorge
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Jarfors, Anders E.W.
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Influence of Mg content on the fatigue behaviour of Al-Si-Mg alloys by rheocasting processManuscript (preprint) (Other academic)
  • 50.
    Zhu, Baiwei
    et al.
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Seifeddine, Salem
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Jarfors, Anders E.W.
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Leisner, Peter
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Zanella, Caterina
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    A study of anodising behaviour of Al-Si components produced by rheocasting2019In: Solid State Phenomena, ISSN 1012-0394, E-ISSN 1662-9779, Vol. 285, p. 39-44Article in journal (Refereed)
    Abstract [en]

    This paper aims to investigate the anodising behaviour of Al-Si components produced by rheocasting, to understand the effect of the surface liquid segregation (SLS) on the anodising response. The material investigated was EN AC 42000 Al-alloy with an addition of 150 ppm Sr. The component was rheocast and conventionally liquid cast for benchmarking. The RheoMetalTM process was used to prepare slurry and subsequently cast using a vertical pressure die casting machine. Prior to anodising, mechanical grinding was used as pre-treatment method for selected samples as comparison with components in the as-cast state. Anodising was performed on the components using a constant controlled voltage at 25 V, in 1 M H2SO4, at room temperature. The duration of anodising was varied from 30 mins to 120 mins to examine the relationship between oxide layer thickness and the anodising time. The oxide layer was investigated and characterised. The results demonstrated that the presence of the SLS layer, which was enriched with alloying elements, had a significant influence on the anodising behaviour of the cast component. The oxide layer thickness of the components produced by rheocasting and fully liquid casting was measured and compared. The relations between the oxide layer thickness and anodising time, as well as the casting methods are presented and discussed in this paper.

    Download full text (pdf)
    Fulltext
12 1 - 50 of 53
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf