Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson, Adam
    Jönköping University, School of Engineering, JTH, Computer Science and Informatics.
    Utveckling av testverktyg för mjukvara med fysiska komponenter2018Independent thesis Basic level (university diploma), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    A lot of time is spent on manual software testing. When software can interact with exponentially more and more components the number of tests required will increase at the same rate. Automation of these manual tests has been previously shown that a time-saving can occur with test automation. When tests need to be done on software that interacts with physical components the results of testing automation are harder to predict. This thesis aims to explain the impact of physical components on the development and the result of test tools developed for use on automated tests on objects with physical components. In this work, a test tool for automatic regression testing for height adjustable table legs were developed. The method used to design the tool was Design Science Research where, for example, TESLA was adapted for use in automated tests with physical components. TESLA is a language for specifying test cases and allowing test automation with embedded systems that was implemented in the test tool's design which could be used to automatically generate scripts and automatically executes test cases. With the development and design of the testing tool, the thesis attempted to answer how a test tool should be designed when physical components are included in the test object and how the measurement accuracy of the tool may affect the test result. Experiments have been carried out during the development process where regression tests have been performed according to a test protocol. During these experiments a test protocol is executed. One manually by hand and one is done automatically with the testing tool. The results of the experiments show that the execution of the test protocol execution with the test tool gave a time saving of 35% compared to the manual tests. The physical components of the test object were shown to affect the automatic execution time negative and further analysis of previous research has shown that this result is insufficient to justify the large initial time that is required to automate tests.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf