Please wait ... |

Refine search result

CiteExportLink to result list
http://hj.diva-portal.org/smash/resultList.jsf?query=&language=en&searchType=SIMPLE&noOfRows=50&sortOrder=author_sort_asc&sortOrder2=title_sort_asc&onlyFullText=false&sf=all&aq=%5B%5B%7B%22journalId%22%3A%227850%22%7D%5D%5D&aqe=%5B%5D&aq2=%5B%5B%5D%5D&af=%5B%5D $(function(){PrimeFaces.cw("InputTextarea","widget_formSmash_upper_j_idt833_recordPermLink",{id:"formSmash:upper:j_idt833:recordPermLink",widgetVar:"widget_formSmash_upper_j_idt833_recordPermLink",autoResize:true});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt833_j_idt836",{id:"formSmash:upper:j_idt833:j_idt836",widgetVar:"widget_formSmash_upper_j_idt833_j_idt836",target:"formSmash:upper:j_idt833:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Permanent link

Cite

Citation styleapa harvard1 ieee modern-language-association-8th-edition vancouver Other style $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_upper_j_idt862",{id:"formSmash:upper:j_idt862",widgetVar:"widget_formSmash_upper_j_idt862",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:upper:j_idt862",e:"change",f:"formSmash",p:"formSmash:upper:j_idt862",u:"formSmash:upper:otherStyle"},ext);}}});});

- apa
- harvard1
- ieee
- modern-language-association-8th-edition
- vancouver
- Other style

Languagede-DE en-GB en-US fi-FI nn-NO nn-NB sv-SE Other locale $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_upper_j_idt879",{id:"formSmash:upper:j_idt879",widgetVar:"widget_formSmash_upper_j_idt879",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:upper:j_idt879",e:"change",f:"formSmash",p:"formSmash:upper:j_idt879",u:"formSmash:upper:otherLanguage"},ext);}}});});

- de-DE
- en-GB
- en-US
- fi-FI
- nn-NO
- nn-NB
- sv-SE
- Other locale

Output formathtml text asciidoc rtf $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_upper_j_idt893",{id:"formSmash:upper:j_idt893",widgetVar:"widget_formSmash_upper_j_idt893"});});

- html
- text
- asciidoc
- rtf

Rows per page

- 5
- 10
- 20
- 50
- 100
- 250

Sort

- Standard (Relevance)
- Author A-Ö
- Author Ö-A
- Title A-Ö
- Title Ö-A
- Publication type A-Ö
- Publication type Ö-A
- Issued (Oldest first)
- Issued (Newest first)
- Created (Oldest first)
- Created (Newest first)
- Last updated (Oldest first)
- Last updated (Newest first)
- Disputation date (earliest first)
- Disputation date (latest first)

- Standard (Relevance)
- Author A-Ö
- Author Ö-A
- Title A-Ö
- Title Ö-A
- Publication type A-Ö
- Publication type Ö-A
- Issued (Oldest first)
- Issued (Newest first)
- Created (Oldest first)
- Created (Newest first)
- Last updated (Oldest first)
- Last updated (Newest first)
- Disputation date (earliest first)
- Disputation date (latest first)

Select

The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.

1. Becker, Roland PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_0_j_idt1247",{id:"formSmash:items:resultList:0:j_idt1247",widgetVar:"widget_formSmash_items_resultList_0_j_idt1247",onLabel:"Becker, Roland ",offLabel:"Becker, Roland ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_0_j_idt1250",{id:"formSmash:items:resultList:0:j_idt1250",widgetVar:"widget_formSmash_items_resultList_0_j_idt1250",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Université de Pau et des Pays de l’Adour.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:0:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Burman, ErikUniversity of Sussex.Hansbo, PeterJönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:0:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity2009In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 198, no 41-44, p. 3352-3360Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_0_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:0:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_0_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); In this note we propose a finite element method for incompressible (or compressible) elasticity problems with discontinuous modulus of elasticity (or, if compressible, Poisson's ratio). The problem is written on mixed form using P(1)-continuous displacements and elementwise P(0) pressures, leading to the possibility of eliminating the pressure beforehand in the compressible case. In the incompressible case, the method is augmented by a stabilization term, penalizing the pressure jumps. We show a priori error estimates under certain regularity hypothesis. In particular we prove that if the exact solution is sufficiently smooth in each subdomain then the convergence order is optimal.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:0:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 2. Becker, Roland PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_1_j_idt1247",{id:"formSmash:items:resultList:1:j_idt1247",widgetVar:"widget_formSmash_items_resultList_1_j_idt1247",onLabel:"Becker, Roland ",offLabel:"Becker, Roland ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_1_j_idt1250",{id:"formSmash:items:resultList:1:j_idt1250",widgetVar:"widget_formSmash_items_resultList_1_j_idt1250",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Universität Heidelberg.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:1:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Hansbo, PeterJönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization.Larson, Mats GChalmers University of Technology.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:1:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Energy norm a posteriori error estimation for discontinuous Galerkin methods2003In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 192, no 5-6, p. 723-733Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_1_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:1:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_1_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); In this paper we present a residual-based a posteriori error estimate of a natural mesh dependent energy norm of the error in a family of discontinuous Galerkin approximations of elliptic problems. The theory is developed for an elliptic model problem in two and three spatial dimensions and general nonconvex polygonal domains are allowed. We also present some illustrating numerical examples.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:1:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 3. Burman, Erik PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_2_j_idt1247",{id:"formSmash:items:resultList:2:j_idt1247",widgetVar:"widget_formSmash_items_resultList_2_j_idt1247",onLabel:"Burman, Erik ",offLabel:"Burman, Erik ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_2_j_idt1250",{id:"formSmash:items:resultList:2:j_idt1250",widgetVar:"widget_formSmash_items_resultList_2_j_idt1250",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); University College London, Gower Street, UK.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:2:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Elfverson, DanielUmeå University, Sweden.Hansbo, PeterJönköping University, School of Engineering, JTH, Product Development. Jönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization.Larson, Mats G.Umeå University, Sweden.Larsson, KarlUmeå University, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:2:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A cut finite element method for the Bernoulli free boundary value problem2017In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 317, p. 598-618Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_2_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:2:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_2_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We develop a cut finite element method for the Bernoulli free boundary problem. The free boundary, represented by an approximate signed distance function on a fixed background mesh, is allowed to intersect elements in an arbitrary fashion. This leads to so called cut elements in the vicinity of the boundary. To obtain a stable method, stabilization terms are added in the vicinity of the cut elements penalizing the gradient jumps across element sides. The stabilization also ensures good conditioning of the resulting discrete system. We develop a method for shape optimization based on moving the distance function along a velocity field which is computed as the H

^{1}Riesz representation of the shape derivative. We show that the velocity field is the solution to an interface problem and we prove an a priori error estimate of optimal order, given the limited regularity of the velocity field across the interface, for the velocity field in the H^{1}norm. Finally, we present illustrating numerical results.PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:2:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 4. Burman, Erik PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_3_j_idt1247",{id:"formSmash:items:resultList:3:j_idt1247",widgetVar:"widget_formSmash_items_resultList_3_j_idt1247",onLabel:"Burman, Erik ",offLabel:"Burman, Erik ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_3_j_idt1250",{id:"formSmash:items:resultList:3:j_idt1250",widgetVar:"widget_formSmash_items_resultList_3_j_idt1250",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); University College London, United Kingdom.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:3:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Elfverson, DanielUmeå universitet, Sweden.Hansbo, PeterJönköping University, School of Engineering, JTH, Materials and Manufacturing.Larson, MatsUmeå universitet, Sweden.Larsson, KarlUmeå universitet, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:3:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Shape optimization using the cut finite element method2018In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 328, p. 242-261Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_3_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:3:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_3_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We present a cut finite element method for shape optimization in the case of linear elasticity. The elastic domain is defined by a level-set function, and the evolution of the domain is obtained by moving the level-set along a velocity field using a transport equation. The velocity field is the largest decreasing direction of the shape derivative that satisfies a certain regularity requirement and the computation of the shape derivative is based on a volume formulation. Using the cut finite element method no re-meshing is required when updating the domain and we may also use higher order finite element approximations. To obtain a stable method, stabilization terms are added in the vicinity of the cut elements at the boundary, which provides control of the variation of the solution in the vicinity of the boundary. We implement and illustrate the performance of the method in the two-dimensional case, considering both triangular and quadrilateral meshes as well as finite element spaces of different order.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:3:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 5. Burman, Erik PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_4_j_idt1247",{id:"formSmash:items:resultList:4:j_idt1247",widgetVar:"widget_formSmash_items_resultList_4_j_idt1247",onLabel:"Burman, Erik ",offLabel:"Burman, Erik ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_4_j_idt1250",{id:"formSmash:items:resultList:4:j_idt1250",widgetVar:"widget_formSmash_items_resultList_4_j_idt1250",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Ecole Polytechnique Fédérale de Lausanne.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:4:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Hansbo, PeterJönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:4:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A stabilized non-conforming finite element method for incompressible flow2006In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 195, no 23-24, p. 2881-2899Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_4_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:4:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_4_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); In this paper we extend the recently introduced edge stabilization method to the case of non-conforming finite element approximations of the linearized Navier-Stokes equation. To get stability also in the convective dominated regime we add a term giving L-2-control of the jump in the gradient over element boundaries. An a priori error estimate that is uniform in the Reynolds number is proved and some numerical examples are presented.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:4:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 6. Burman, Erik PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_5_j_idt1247",{id:"formSmash:items:resultList:5:j_idt1247",widgetVar:"widget_formSmash_items_resultList_5_j_idt1247",onLabel:"Burman, Erik ",offLabel:"Burman, Erik ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_5_j_idt1250",{id:"formSmash:items:resultList:5:j_idt1250",widgetVar:"widget_formSmash_items_resultList_5_j_idt1250",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Ecole Polytechnique Fédérale de Lausanne.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:5:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Hansbo, PeterJönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:5:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems2004In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 193, no 15-16, p. 1437-1453Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_5_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:5:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_5_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); In this paper we recall a stabilization technique for finite element methods for convection-diffusion-reaction equations, originally proposed by Douglas and Dupont [Computing Methods in Applied Sciences, Springer-Verlag, Berlin, 1976]. The method uses least square stabilization of the gradient jumps a across element boundaries. We prove that the method is stable in the hyperbolic limit and prove optimal a priori error estimates. We address the question of monotonicity of discrete Solutions and present some numerical examples illustrating the theoretical results.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:5:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 7. Burman, Erik PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_6_j_idt1247",{id:"formSmash:items:resultList:6:j_idt1247",widgetVar:"widget_formSmash_items_resultList_6_j_idt1247",onLabel:"Burman, Erik ",offLabel:"Burman, Erik ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_6_j_idt1250",{id:"formSmash:items:resultList:6:j_idt1250",widgetVar:"widget_formSmash_items_resultList_6_j_idt1250",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Ecole Polytechnique Fédérale de Lausanne.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:6:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Hansbo, PeterJönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:6:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Edge stabilization for the generalized Stokes problem: A continuous interior penalty method2006In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 195, no 19-22, p. 2393-2410Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_6_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:6:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_6_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); In this note we introduce and analyze a stabilized finite element method for the generalized Stokes equation. Stability is obtained by adding a least squares penalization of the gradient jumps across element boundaries. The method can be seen as a higher order version of the Brezzi-Pitkdranta penalty stabilization [F. Brezzi, J. Pitkaranta, On the stabilization of finite element approximations of the Stokes equations, in: W. Hackbusch (Ed.), Efficient Solution of Elliptic Systems, Vieweg, 1984], but gives better resolution on the boundary for the Stokes equation than does classical Galerkin least-squares formulation. We prove optimal and quasi-optimal convergence properties for Stokes' problem and for the porous media models of Darcy and Brinkman. Some numerical examples are given.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:6:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 8. Burman, Erik PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_7_j_idt1247",{id:"formSmash:items:resultList:7:j_idt1247",widgetVar:"widget_formSmash_items_resultList_7_j_idt1247",onLabel:"Burman, Erik ",offLabel:"Burman, Erik ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_7_j_idt1250",{id:"formSmash:items:resultList:7:j_idt1250",widgetVar:"widget_formSmash_items_resultList_7_j_idt1250",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); University of Sussex.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:7:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Hansbo, PeterJönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:7:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method2010In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 199, no 41-44, p. 2680-2686Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_7_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:7:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_7_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We propose a fictitious domain method where the mesh is cut by the boundary. The primal solution is computed only up to the boundary; the solution itself is defined also by nodes outside the domain, but the weak finite element form only involves those parts of the elements that are located inside the domain. The multipliers are defined as being element-wise constant on the whole (including the extension) of the cut elements in the mesh defining the primal variable. Inf-sup stability is obtained by penalizing the jump of the multiplier over element faces. We consider the case of a polygonal domain with possibly curved boundaries. The method has optimal convergence properties.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:7:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 9. Burman, Erik PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_8_j_idt1247",{id:"formSmash:items:resultList:8:j_idt1247",widgetVar:"widget_formSmash_items_resultList_8_j_idt1247",onLabel:"Burman, Erik ",offLabel:"Burman, Erik ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_8_j_idt1250",{id:"formSmash:items:resultList:8:j_idt1250",widgetVar:"widget_formSmash_items_resultList_8_j_idt1250",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); University College London.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:8:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Hansbo, PeterJönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization. Jönköping University, School of Engineering, JTH, Product Development.Larson, Mats G.Umeå University.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:8:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A stabilized cut finite element method for partial differential equations on surfaces: The Laplace–Beltrami operator2015In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 285, p. 188-207Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_8_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:8:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_8_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We consider solving the Laplace–Beltrami problem on a smooth two dimensional surface embedded into a three dimensional space meshed with tetrahedra. The mesh does not respect the surface and thus the surface cuts through the elements. We consider a Galerkin method based on using the restrictions of continuous piecewise linears defined on the tetrahedra to the surface as trial and test functions.

The resulting discrete method may be severely ill-conditioned, and the main purpose of this paper is to suggest a remedy for this problem based on adding a consistent stabilization term to the original bilinear form. We show optimal estimates for the condition number of the stabilized method independent of the location of the surface. We also prove optimal a priori error estimates for the stabilized method.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:8:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 10. Burman, Erik PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_9_j_idt1247",{id:"formSmash:items:resultList:9:j_idt1247",widgetVar:"widget_formSmash_items_resultList_9_j_idt1247",onLabel:"Burman, Erik ",offLabel:"Burman, Erik ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_9_j_idt1250",{id:"formSmash:items:resultList:9:j_idt1250",widgetVar:"widget_formSmash_items_resultList_9_j_idt1250",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Department of Mathematics, University College London, United Kingdom.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:9:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Hansbo, PeterJönköping University, School of Engineering, JTH, Product Development. Jönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization.Larson, Mats G.Department of Mathematics and Mathematical Statistics, Umeå University, Sweden.Massing, AndréDepartment of Mathematics and Mathematical Statistics, Umeå University, Sweden.Zahedi, SaraDepartment of Mathematics, KTH, Stockholm, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:9:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Full gradient stabilized cut finite element methods for surface partial differential equations2016In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 310, p. 278-296Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_9_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:9:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_9_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We propose and analyze a new stabilized cut finite element method for the Laplace–Beltrami operator on a closed surface. The new stabilization term provides control of the full R 3 gradient on the active mesh consisting of the elements that intersect the surface. Compared to face stabilization, based on controlling the jumps in the normal gradient across faces between elements in the active mesh, the full gradient stabilization is easier to implement and does not significantly increase the number of nonzero elements in the mass and stiffness matrices. The full gradient stabilization term may be combined with a variational formulation of the Laplace–Beltrami operator based on tangential or full gradients and we present a simple and unified analysis that covers both cases. The full gradient stabilization term gives rise to a consistency error which, however, is of optimal order for piecewise linear elements, and we obtain optimal order a priori error estimates in the energy and L 2 norms as well as an optimal bound of the condition number. Finally, we present detailed numerical examples where we in particular study the sensitivity of the condition number and error on the stabilization parameter.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:9:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 11. Burman, Erik PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_10_j_idt1247",{id:"formSmash:items:resultList:10:j_idt1247",widgetVar:"widget_formSmash_items_resultList_10_j_idt1247",onLabel:"Burman, Erik ",offLabel:"Burman, Erik ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_10_j_idt1250",{id:"formSmash:items:resultList:10:j_idt1250",widgetVar:"widget_formSmash_items_resultList_10_j_idt1250",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Department of Mathematics, University College London.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:10:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Hansbo, PeterJönköping University, School of Engineering, JTH, Product Development. Jönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization.Larson, Mats G.Department of Mathematics and Mathematical Statistics, Umeå University.Stenberg, RolfDepartment of Mathematics and Systems Analysis, Aalto University.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:10:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Galerkin least squares finite element method for the obstacle problem2017In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 313, p. 362-374Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_10_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:10:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_10_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We construct a consistent multiplier free method for the finite element solution of the obstacle problem. The method is based on an augmented Lagrangian formulation in which we eliminate the multiplier by use of its definition in a discrete setting. We prove existence and uniqueness of discrete solutions and optimal order a priori error estimates for smooth exact solutions. Using a saturation assumption we also prove an a posteriori error estimate. Numerical examples show the performance of the method and of an adaptive algorithm for the control of the discretization error.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:10:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 12. Burman, E. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_11_j_idt1247",{id:"formSmash:items:resultList:11:j_idt1247",widgetVar:"widget_formSmash_items_resultList_11_j_idt1247",onLabel:"Burman, E. ",offLabel:"Burman, E. ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_11_j_idt1250",{id:"formSmash:items:resultList:11:j_idt1250",widgetVar:"widget_formSmash_items_resultList_11_j_idt1250",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); University College London, London, United Kingdom.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:11:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Elfverson, D.Umeå University, Umeå, Sweden.Hansbo, PeterJönköping University, School of Engineering, JTH, Materials and Manufacturing.Larson, M. G.Umeå University, Umeå, Sweden.Larsson, K.Umeå University, Umeå, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:11:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Cut topology optimization for linear elasticity with coupling to parametric nondesign domain regions2019In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 350, p. 462-479Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_11_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:11:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_11_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We develop a density based topology optimization method for linear elasticity based on the cut finite element method. More precisely, the design domain is discretized using cut finite elements which allow complicated geometry to be represented on a structured fixed background mesh. The geometry of the design domain is allowed to cut through the background mesh in an arbitrary way and certain stabilization terms are added in the vicinity of the cut boundary, which guarantee stability of the method. Furthermore, in addition to standard Dirichlet and Neumann conditions we consider interface conditions enabling coupling of the design domain to parts of the structure for which the design is already given. These given parts of the structure, called the nondesign domain regions, typically represent parts of the geometry provided by the designer. The nondesign domain regions may be discretized independently from the design domains using for example parametric meshed finite elements or isogeometric analysis. The interface and Dirichlet conditions are based on Nitsche's method and are stable for the full range of density parameters. In particular we obtain a traction-free Neumann condition in the limit when the density tends to zero.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:11:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 13. Cenanovic, Mirza PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_12_j_idt1247",{id:"formSmash:items:resultList:12:j_idt1247",widgetVar:"widget_formSmash_items_resultList_12_j_idt1247",onLabel:"Cenanovic, Mirza ",offLabel:"Cenanovic, Mirza ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_12_j_idt1250",{id:"formSmash:items:resultList:12:j_idt1250",widgetVar:"widget_formSmash_items_resultList_12_j_idt1250",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Jönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:12:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Hansbo, PeterJönköping University, School of Engineering, JTH, Product Development. Jönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization.Larsson, Mats G.Umeå University.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:12:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Cut finite element modeling of linear membranes2016In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 310, p. 98-111Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_12_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:12:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_12_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We construct a cut finite element method for the membrane elasticity problem on an embedded mesh using tangential differential calculus, i.e., with the equilibrium equations pointwise projected onto the tangent plane of the surface to create a pointwise planar problem in the tangential direction. Both free membranes and membranes coupled to 3D elasticity are considered. The discretization of the membrane comes from a Galerkin method using the restriction of 3D basis functions (linear or trilinear) to the surface representing the membrane. In the case of coupling to 3D elasticity, we view the membrane as giving additional stiffness contributions to the standard stiffness matrix resulting from the discretization of the three-dimensional continuum.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:12:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 14. Hansbo, Anita PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_13_j_idt1247",{id:"formSmash:items:resultList:13:j_idt1247",widgetVar:"widget_formSmash_items_resultList_13_j_idt1247",onLabel:"Hansbo, Anita ",offLabel:"Hansbo, Anita ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_13_j_idt1250",{id:"formSmash:items:resultList:13:j_idt1250",widgetVar:"widget_formSmash_items_resultList_13_j_idt1250",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Department of Informatics and Mathematics, University of Trollhättan Uddevalla.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:13:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Hansbo, PeterJönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:13:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A finite element method for the simulation of strong and weak discontinuities in solid mechanics2004In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 193, no 33-35, p. 3523-3540Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_13_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:13:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_13_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); In this paper we introduce and analyze a finite element method for elasticity problems with interfaces. The method allows for discontinuities, internal to the elements, in the approximation across the interface. We propose a general approach that can handle both perfectly and imperfectly bonded interfaces without modifications of the code. For the case of linear elasticity, we show that optimal order of convergence holds without restrictions on the location of the interface relative to the mesh. We present numerical examples for the linear case as well as for contact and crack propagation model problems.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:13:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 15. Hansbo, Anita et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_14_j_idt1250",{id:"formSmash:items:resultList:14:j_idt1250",widgetVar:"widget_formSmash_items_resultList_14_j_idt1250",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:14:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Hansbo, PeterJönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:14:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); An unfitted finite element method, based on Nitsche's method, for elliptic interface problems2002In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 191, no 47-48, p. 5537-5552Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_14_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:14:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_14_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); In this paper we propose a method for the finite element solution of elliptic interface problem, using an approach due to Nitsche. The method allows for discontinuities, internal to the elements, in the approximation across the interface. We show that optimal order of convergence holds without restrictions on the location of the interface relative to the mesh. Further, we derive a posteriori error estimates for the purpose of controlling functionals of the error and present some numerical examples.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:14:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 16. Hansbo, Peter PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_15_j_idt1247",{id:"formSmash:items:resultList:15:j_idt1247",widgetVar:"widget_formSmash_items_resultList_15_j_idt1247",onLabel:"Hansbo, Peter ",offLabel:"Hansbo, Peter ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Jönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:15:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:15:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A free-Lagrange finite element method using space-time elements2000In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 188, no 1-3, p. 347-361Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_15_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:15:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_15_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We consider the construction and implementation of a 'free-Lagrange' finite element method, where local mesh modifications can be introduced during computation. The method is based on the use of space-time oriented meshs, with the space-time elements aligned along the (approximate) characteristics. In particular, we address the problem of mass conservation in transferring data between different grids. Numerical examples range from convection-diffusion to incompressible flow in domains with moving parts.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:15:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 17. Hansbo, Peter PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_16_j_idt1247",{id:"formSmash:items:resultList:16:j_idt1247",widgetVar:"widget_formSmash_items_resultList_16_j_idt1247",onLabel:"Hansbo, Peter ",offLabel:"Hansbo, Peter ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Jönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:16:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:16:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A new approach to quadrature for finite elements incorporating hourglass control as a special case1998In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 158, no 3-4, p. 301-309Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_16_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:16:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_16_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); The purpose of this paper is to suggest a simple alternative approach to Gaussian quadrature in the finite element method. We show that this quadrature rule may be used to derive 'hourglass control' stabilization matrices. We also show that the proposed quadrature scheme does not destroy the order of the bilinear finite element method.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:16:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 18. Hansbo, Peter PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_17_j_idt1247",{id:"formSmash:items:resultList:17:j_idt1247",widgetVar:"widget_formSmash_items_resultList_17_j_idt1247",onLabel:"Hansbo, Peter ",offLabel:"Hansbo, Peter ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:17:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:17:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A nonconforming rotated Q1 approximation on tetrahedra2011In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 200, no 9-12, p. 1311-1316Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_17_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:17:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_17_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); In this paper we construct an approximation that uses midpoints of edges on tetrahedra in three dimensions. The construction is based on the three-dimensional version of the rotated Q1-approximation proposed by Rannacher and Turek (1992)16]. We prove a priori error estimates for finite element solutions of the elasticity equations using the new element. Since it contains (rotated) bilinear terms it performs substantially better than the standard constant strain element in bending. It also allows for under-integration (in the form of one point Gauss integration of volumetric terms) in near incompressible situations. Numerical examples are included.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:17:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 19. Hansbo, Peter PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_18_j_idt1247",{id:"formSmash:items:resultList:18:j_idt1247",widgetVar:"widget_formSmash_items_resultList_18_j_idt1247",onLabel:"Hansbo, Peter ",offLabel:"Hansbo, Peter ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:18:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:18:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Aspects of conservation in finite-element flow computations1994In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 117, no 3-4, p. 423-437Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_18_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:18:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_18_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); In this paper we consider different aspects of conservation in the finite element method. In particular, we address the problem of conservation using numerical integration, related to mass lumping, simplified projections, quasilinear formulations, and non-conservative variables. Numerical results concerning simplified projection algorithms are given.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:18:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 20. Hansbo, Peter PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_19_j_idt1247",{id:"formSmash:items:resultList:19:j_idt1247",widgetVar:"widget_formSmash_items_resultList_19_j_idt1247",onLabel:"Hansbo, Peter ",offLabel:"Hansbo, Peter ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:19:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:19:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); The characteristic streamline diffusion method for convection-diffusion problems1992In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 96, no 2, p. 239-253Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_19_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:19:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_19_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); The paper describes an approximately characteristic finite element method for the solution of the time-dependent linear scalar convection-diffusion equation. The method is based on space-time elements approximately aligned with the characteristics in space-time. Attention is focused on implementation aspects: avoiding mesh tangling, efficient solution procedures and interpolation. Numerical results for some two-dimensional problems are given.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:19:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 21. Hansbo, Peter PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_20_j_idt1247",{id:"formSmash:items:resultList:20:j_idt1247",widgetVar:"widget_formSmash_items_resultList_20_j_idt1247",onLabel:"Hansbo, Peter ",offLabel:"Hansbo, Peter ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:20:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:20:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); The characteristic streamline diffusion method for the time-dependent incompressible Navier-Stokes equations1992In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 99, no 2-3, p. 171-186Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_20_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:20:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_20_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); The paper presents a streamline diffusion finite element method for time-dependent flow problems, with or without free surface, governed by the incompressible Navier-Stokes equations. The method is based on space-time elements, discontinuous in time and continuous in space, which yields a general setting: if the elements are oriented along the characteristic direction in space-time a Lagrangian method is obtained, if they are fixed the method is Eulerian. Thus the method may be implemented as an arbitrary Lagrangian-Eulerian method, retaining the advantages of the streamline diffusion method on fixed grids. In particular. our method is stable in the whole range of Reynolds numbers and yields the possibility of equal order interpolation for velocity and pressure. Furthermore, since the solution is allowed to be discontinuous in time at discrete time levels, large deformations of the original domain are easily handled, e.g. with remeshing. Numerical results for some 2D-problems are given.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:20:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 22. Hansbo, Peter PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_21_j_idt1247",{id:"formSmash:items:resultList:21:j_idt1247",widgetVar:"widget_formSmash_items_resultList_21_j_idt1247",onLabel:"Hansbo, Peter ",offLabel:"Hansbo, Peter ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_21_j_idt1250",{id:"formSmash:items:resultList:21:j_idt1250",widgetVar:"widget_formSmash_items_resultList_21_j_idt1250",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:21:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Heintz, DavidChalmers University of Technology and University of Gothenburg.Larson, Mats G.Umeå University.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:21:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A finite element method with discontinuous rotations for the Mindlin-Reissner plate model2011In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 200, no 5-8, p. 638-648Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_21_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:21:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_21_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We present a continuous-discontinuous finite element method for the Mindlin-Reissner plate model based on continuous polynomials of degree k >= 2 for the transverse displacements and discontinuous polynomials of degree k - 1 for the rotations. We prove a priori convergence estimates, uniformly in the thickness of the plate, and thus show that locking is avoided. We also derive a posteriori error estimates based on duality, together with corresponding adaptive procedures for controlling linear functionals of the error. Finally, we present some numerical results.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:21:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 23. Hansbo, Peter PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_22_j_idt1247",{id:"formSmash:items:resultList:22:j_idt1247",widgetVar:"widget_formSmash_items_resultList_22_j_idt1247",onLabel:"Hansbo, Peter ",offLabel:"Hansbo, Peter ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_22_j_idt1250",{id:"formSmash:items:resultList:22:j_idt1250",widgetVar:"widget_formSmash_items_resultList_22_j_idt1250",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:22:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Hermansson, JoakimChalmers University of Technology.Svedberg, ThomasChalmers University of Technology.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:22:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Nitsche's method combined with space-time finite elements for ALE fluid-structure interaction problems2004In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 193, no 39-41, p. 4195-4206Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_22_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:22:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_22_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We propose a weak method for handling the fluid-structure interface in finite element fluid-structure interaction based on Nitsche's method [Abh. Math. Univ. Hamburg 36 (1971) 9]. We assume transient incompressible Newtonian flow and, for the structure, undamped linear elasticity. For the time-discretization, we use the time-continuous (energy conserving) Galerkin method for the structure, and for the fluid we employ the time-discontinuous Galerkin method. This means that the velocity becomes piecewise constant on each timestep for the fluid, matching the time-derivative of the displacements in the solid which is also piecewise constant over a time step. We formulate the method and report some numerical examples using space-time oriented elements for the fluid in order to mimic Lagrangian or ALE-type simulations.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:22:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 24. Hansbo, Peter PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_23_j_idt1247",{id:"formSmash:items:resultList:23:j_idt1247",widgetVar:"widget_formSmash_items_resultList_23_j_idt1247",onLabel:"Hansbo, Peter ",offLabel:"Hansbo, Peter ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_23_j_idt1250",{id:"formSmash:items:resultList:23:j_idt1250",widgetVar:"widget_formSmash_items_resultList_23_j_idt1250",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:23:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Johnson, ClaesPrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:23:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Adaptive streamline diffusion methods for compressible flow using conservation variables1991In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 87, no 2-3, p. 267-280Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_23_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:23:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_23_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We consider the streamline diffusion finite element method applied to compressible flow using conservation variables. We propose some adaptive algorithms and present related numerical results.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:23:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 25. Hansbo, Peter PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_24_j_idt1247",{id:"formSmash:items:resultList:24:j_idt1247",widgetVar:"widget_formSmash_items_resultList_24_j_idt1247",onLabel:"Hansbo, Peter ",offLabel:"Hansbo, Peter ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_24_j_idt1250",{id:"formSmash:items:resultList:24:j_idt1250",widgetVar:"widget_formSmash_items_resultList_24_j_idt1250",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Jönköping University, School of Engineering, JTH, Product Development. Jönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:24:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Jonsson, TobiasDepartment of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden.Larson, Mats G.Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden.Larsson, KarlDepartment of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:24:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A Nitsche method for elliptic problems on composite surfaces2017In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 326, p. 505-525Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_24_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:24:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_24_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We develop a finite element method for elliptic partial differential equations on so called composite surfaces that are built up out of a finite number of surfaces with boundaries that fit together nicely in the sense that the intersection between any two surfaces in the composite surface is either empty, a point, or a curve segment, called an interface curve. Note that several surfaces can intersect along the same interface curve. On the composite surface we consider a broken finite element space which consists of a continuous finite element space at each subsurface without continuity requirements across the interface curves. We derive a Nitsche type formulation in this general setting and by assuming only that a certain inverse inequality and an approximation property hold we can derive stability and error estimates in the case when the geometry is exactly represented. We discuss several different realizations, including so called cut meshes, of the method. Finally, we present numerical examples.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:24:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 26. Hansbo, Peter PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_25_j_idt1247",{id:"formSmash:items:resultList:25:j_idt1247",widgetVar:"widget_formSmash_items_resultList_25_j_idt1247",onLabel:"Hansbo, Peter ",offLabel:"Hansbo, Peter ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_25_j_idt1250",{id:"formSmash:items:resultList:25:j_idt1250",widgetVar:"widget_formSmash_items_resultList_25_j_idt1250",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Jönköping University, School of Engineering, JTH, Mechanical Engineering. Jönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:25:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Larson, MatsUmeå Universitet.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:25:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Locking free quadrilateral continuous/discontinuous finite element methods for the Reissner–Mindlin plate2014In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 269, p. 381-393Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_25_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:25:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_25_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We develop a finite element method with continuous displacements and discontinuous rotations for the Reissner-Mindlin plate model on quadrilateral elements. To avoid shear locking, the rotations must have the same polynomial degree in the parametric reference plane as the parametric derivatives of the displacements, and obey the same transforma- tion law to the physical plane as the gradient of displacements. We prove optimal conver- gence, uniformly in the plate thickness, and provide numerical results that confirm our estimates.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:25:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 27. Hansbo, Peter PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_26_j_idt1247",{id:"formSmash:items:resultList:26:j_idt1247",widgetVar:"widget_formSmash_items_resultList_26_j_idt1247",onLabel:"Hansbo, Peter ",offLabel:"Hansbo, Peter ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_26_j_idt1250",{id:"formSmash:items:resultList:26:j_idt1250",widgetVar:"widget_formSmash_items_resultList_26_j_idt1250",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:26:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Larson, Mats G.Department of Mathematics and Mathematical Statistics, Umeå University.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:26:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A posteriori error estimates for continuous/discontinuous Galerkin approximations of the Kirchhoff–Love plate2011In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 200, no 47-48, p. 3289-3295Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_26_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:26:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_26_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We present energy norm a posteriori error estimates for continuous/discontinuous Galerkin (c/dG) approximations of the Kirchhoff–Love plate problem. The method is based on a continuous displacement field inserted into a symmetric discontinuous Galerkin formulation of the fourth order partial differential equation governing the deflection of a thin plate. We also give explicit formulas for the penalty parameter involved in the formulation.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:26:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 28. Hansbo, Peter PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_27_j_idt1247",{id:"formSmash:items:resultList:27:j_idt1247",widgetVar:"widget_formSmash_items_resultList_27_j_idt1247",onLabel:"Hansbo, Peter ",offLabel:"Hansbo, Peter ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_27_j_idt1250",{id:"formSmash:items:resultList:27:j_idt1250",widgetVar:"widget_formSmash_items_resultList_27_j_idt1250",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:27:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Larson, Mats GChalmers University of Technology.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:27:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche's method2002In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 191, no 17-18, p. 1895-1908Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_27_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:27:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_27_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We propose and analyze a discontinuous finite element method for nearly incompressible linear elasticity on triangular meshes. We show optimal error estimates that are uniform with respect to Poisson's ratio. The method is thus locking free. We also introduce an equivalent mixed formulation, allowing for completely incompressible elasticity problems. Numerical results are presented.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:27:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 29. Hansbo, Peter PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_28_j_idt1247",{id:"formSmash:items:resultList:28:j_idt1247",widgetVar:"widget_formSmash_items_resultList_28_j_idt1247",onLabel:"Hansbo, Peter ",offLabel:"Hansbo, Peter ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_28_j_idt1250",{id:"formSmash:items:resultList:28:j_idt1250",widgetVar:"widget_formSmash_items_resultList_28_j_idt1250",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:28:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Larson, Mats G.Umeå University.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:28:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Energy norm a posteriori error estimates for discontinuous Galerkin approximations of the linear elasticity problem2011In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 200, no 45-46, p. 3026-3030Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_28_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:28:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_28_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We present a residual-based a posteriori error estimate in an energy norm of the error in a family of discontinuous Galerkin approximations of linear elasticity problems. The theory is developed in two and three spatial dimensions and general nonconvex polygonal domains are allowed. We also present some illustrating numerical examples.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:28:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 30. Hansbo, Peter PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_29_j_idt1247",{id:"formSmash:items:resultList:29:j_idt1247",widgetVar:"widget_formSmash_items_resultList_29_j_idt1247",onLabel:"Hansbo, Peter ",offLabel:"Hansbo, Peter ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_29_j_idt1250",{id:"formSmash:items:resultList:29:j_idt1250",widgetVar:"widget_formSmash_items_resultList_29_j_idt1250",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Jönköping University, School of Engineering, JTH, Mechanical Engineering. Jönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:29:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Larson, Mats G.Umeå University.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:29:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Finite element modeling of a linear membrane shell problem using tangential differential calculus2014In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 270, p. 1-14Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_29_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:29:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_29_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We construct a new Galerkin finite element method for the membrane elasticity problem on a meshed surface by using two-dimensional elements extended into three dimensions. The membrane finite element model is established using a tangential differential calculus approach that avoids the use of classical differential geometric methods. The finite element method generalizes the classical flat element shell method where standard plane stress elements are used for membrane problems. This makes our method applicable to a wider range of problems and of surface descriptions, including surfaces defined by distance functions.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:29:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 31. Hansbo, Peter PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_30_j_idt1247",{id:"formSmash:items:resultList:30:j_idt1247",widgetVar:"widget_formSmash_items_resultList_30_j_idt1247",onLabel:"Hansbo, Peter ",offLabel:"Hansbo, Peter ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_30_j_idt1250",{id:"formSmash:items:resultList:30:j_idt1250",widgetVar:"widget_formSmash_items_resultList_30_j_idt1250",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Jönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization. Jönköping University, School of Engineering, JTH, Product Development.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:30:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Larson, Mats G.Department of Mathematics and Mathematical Statistics, Umeå University, Sweden.Zahedi, SaraDepartment of Mathematics, KTH Royal Institute of Technology, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:30:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A cut finite element method for coupled bulk-surface problems on time-dependent domains2016In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 307, p. 96-116Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_30_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:30:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_30_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); In this contribution we present a new computational method for coupled bulk-surface problems on time-dependent domains. The method is based on a space–time formulation using discontinuous piecewise linear elements in time and continuous piecewise linear elements in space on a fixed background mesh. The domain is represented using a piecewise linear level set function on the background mesh and a cut finite element method is used to discretize the bulk and surface problems. In the cut finite element method the bilinear forms associated with the weak formulation of the problem are directly evaluated on the bulk domain and the surface defined by the level set, essentially using the restrictions of the piecewise linear functions to the computational domain. In addition a stabilization term is added to stabilize convection as well as the resulting algebraic system that is solved in each time step. We show in numerical examples that the resulting method is accurate and stable and results in well conditioned algebraic systems independent of the position of the interface relative to the background mesh.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:30:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 32. Hansbo, Peter PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_31_j_idt1247",{id:"formSmash:items:resultList:31:j_idt1247",widgetVar:"widget_formSmash_items_resultList_31_j_idt1247",onLabel:"Hansbo, Peter ",offLabel:"Hansbo, Peter ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_31_j_idt1250",{id:"formSmash:items:resultList:31:j_idt1250",widgetVar:"widget_formSmash_items_resultList_31_j_idt1250",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Jönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization. Jönköping University, School of Engineering, JTH, Product Development.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:31:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Larson, Mats G.Umeå University.Zahedi, SaraKTH Royal Institute of Technology.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:31:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Characteristic cut finite element methods for convection–diffusion problems on time dependent surfaces2015In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 293, p. 431-461Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_31_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:31:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_31_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We develop a finite element method for convection–diffusion problems on a given time dependent surface, for instance modeling the evolution of a surfactant. The method is based on a characteristic-Galerkin formulation combined with a piecewise linear cut finite element method in space. The cut finite element method is constructed by embedding the surface in a background grid and then using the restriction to the surface of a finite element space defined on the background grid. The surface is allowed to cut through the background grid in an arbitrary fashion. To ensure stability and well posedness of the resulting algebraic systems of equations, independent of the position of the surface in the background grid, we add a consistent stabilization term. We prove error estimates and present confirming numerical results.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:31:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 33. Hansbo, Peter PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_32_j_idt1247",{id:"formSmash:items:resultList:32:j_idt1247",widgetVar:"widget_formSmash_items_resultList_32_j_idt1247",onLabel:"Hansbo, Peter ",offLabel:"Hansbo, Peter ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_32_j_idt1250",{id:"formSmash:items:resultList:32:j_idt1250",widgetVar:"widget_formSmash_items_resultList_32_j_idt1250",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:32:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Szepessy, AndersPrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:32:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A velocity pressure streamline diffusion finite-element method for the incompressible Navier-Stokes equations1990In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 84, no 2, p. 175-192Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_32_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:32:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_32_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); In this paper a streamline diffusion finite element method is introduced for the time-dependent incompressible Navier-Stokes equations in a bounded domain in

^{2}and^{3}in the case of high Reynolds number flow. An error estimate is proved and numerical results are given. The method is based on a mixed velocity-pressure formulation using the same finite element discretization of space-time for the velocity and the pressure spaces, which consist of piecewise linear functions, together with certain least-squares modifications of the Galerkin variational formulation giving added stability without sacrificing accuracy.PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:32:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 34. Hansbo, Peter PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_33_j_idt1247",{id:"formSmash:items:resultList:33:j_idt1247",widgetVar:"widget_formSmash_items_resultList_33_j_idt1247",onLabel:"Hansbo, Peter ",offLabel:"Hansbo, Peter ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_33_j_idt1250",{id:"formSmash:items:resultList:33:j_idt1250",widgetVar:"widget_formSmash_items_resultList_33_j_idt1250",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Jönköping University, School of Engineering, JTH, Product Development. Jönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:33:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Larson, Mats G.Umeå University, Sweden.Massing, AndréUmeå University, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:33:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A stabilized cut finite element method for the Darcy problem on surfaces2017In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 326, p. 298-318Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_33_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:33:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_33_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We develop a cut finite element method for the Darcy problem on surfaces. The cut finite element method is based on embedding the surface in a three dimensional finite element mesh and using finite element spaces defined on the three dimensional mesh as trial and test functions. Since we consider a partial differential equation on a surface, the resulting discrete weak problem might be severely ill conditioned. We propose a full gradient and a normal gradient based stabilization computed on the background mesh to render the proposed formulation stable and well conditioned irrespective of the surface positioning within the mesh. Our formulation extends and simplifies the Masud–Hughes stabilized primal mixed formulation of the Darcy surface problem proposed in Hansbo and Larson (2016) on fitted triangulated surfaces. The tangential condition on the velocity and the pressure gradient is enforced only weakly, avoiding the need for any tangential projection. The presented numerical analysis accounts for different polynomial orders for the velocity, pressure, and geometry approximation which are corroborated by numerical experiments. In particular, we demonstrate both theoretically and through numerical results that the normal gradient stabilized variant results in a high order scheme.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:33:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); The full text will be freely available from 2019-09-06 08:00$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_33_j_idt1519_0_j_idt1522",{id:"formSmash:items:resultList:33:j_idt1519:0:j_idt1522",widgetVar:"widget_formSmash_items_resultList_33_j_idt1519_0_j_idt1522",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:33:j_idt1519:0:fullTextSvg"});}); 35. Heintz, Per PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_34_j_idt1247",{id:"formSmash:items:resultList:34:j_idt1247",widgetVar:"widget_formSmash_items_resultList_34_j_idt1247",onLabel:"Heintz, Per ",offLabel:"Heintz, Per ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_34_j_idt1250",{id:"formSmash:items:resultList:34:j_idt1250",widgetVar:"widget_formSmash_items_resultList_34_j_idt1250",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Chalmers University of Technology.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:34:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Hansbo, PeterJönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:34:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Stabilized Lagrange multiplier methods for bilateral elastic contact with friction2006In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 195, no 33-36, p. 4323-4333Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_34_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:34:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_34_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); In most finite element (FE) codes contact is checked only at the nodes, corresponding to the use of pointwise constraints. However, this approach might not be stable in case the bodies coming into contact have non-matching grids at the contact interface. To alleviate this problem, we propose a stabilized Lagrange multiplier method, based on a global polynomial multiplier, for the finite element solution of (non)linear elastic contact problems with non-matching grids. In particular, our approach allows us to avoid integrating products of different finite element basis functions on the surface meshes at the contact zone.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:34:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 36. Johnson, Claes PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_35_j_idt1247",{id:"formSmash:items:resultList:35:j_idt1247",widgetVar:"widget_formSmash_items_resultList_35_j_idt1247",onLabel:"Johnson, Claes ",offLabel:"Johnson, Claes ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_35_j_idt1250",{id:"formSmash:items:resultList:35:j_idt1250",widgetVar:"widget_formSmash_items_resultList_35_j_idt1250",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Chalmers University of Technology.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:35:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Hansbo, PeterJönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:35:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Adaptive finite element methods in computational mechanics1992In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 101, no 1-3, p. 143-181Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_35_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:35:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_35_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We present a general approach to adaptivity for finite element methods and give applications to linear elasticity, non-linear elasto-plasticity and nonlinear conservation laws, including numerical results.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:35:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 37. Strömberg, Niclas PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_36_j_idt1247",{id:"formSmash:items:resultList:36:j_idt1247",widgetVar:"widget_formSmash_items_resultList_36_j_idt1247",onLabel:"Strömberg, Niclas ",offLabel:"Strömberg, Niclas ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Jönköping University, School of Engineering, JTH, Mechanical Engineering. Jönköping University, School of Engineering, JTH. Research area Engineering mechanics and optimization.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:36:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:36:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Finite element treatment of two-dimensional thermoelastic wear problems1999In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 177, no 3-4, p. 441-455Article in journal (Refereed)38. Yedeg, Esubalewe Lakie PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_37_j_idt1247",{id:"formSmash:items:resultList:37:j_idt1247",widgetVar:"widget_formSmash_items_resultList_37_j_idt1247",onLabel:"Yedeg, Esubalewe Lakie ",offLabel:"Yedeg, Esubalewe Lakie ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_37_j_idt1250",{id:"formSmash:items:resultList:37:j_idt1250",widgetVar:"widget_formSmash_items_resultList_37_j_idt1250",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Umeå University.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:37:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Wadbro, EddieUmeå University.Hansbo, PeterJönköping University, School of Engineering, JTH, Product Development. Jönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization.Larson, Mats G.Umeå University.Berggren, MartinUmeå University.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:37:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A Nitsche-type method for Helmholtz equation with an embedded acoustically permeable interface2016In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 304, p. 479-500Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_37_j_idt1288_0_j_idt1289",{id:"formSmash:items:resultList:37:j_idt1288:0:j_idt1289",widgetVar:"widget_formSmash_items_resultList_37_j_idt1288_0_j_idt1289",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We propose a new finite element method for Helmholtz equation in the situation where an acoustically permeable interface is embedded in the computational domain. A variant of Nitsche’s method, different from the standard one, weakly enforces the impedance conditions for transmission through the interface. As opposed to a standard finite-element discretization of the problem, our method seamlessly handles a complex-valued impedance function Z that is allowed to vanish. In the case of a vanishing impedance, the proposed method reduces to the classic Nitsche method to weakly enforce continuity over the interface. We show stability of the method, in terms of a discrete Gårding inequality, for a quite general class of surface impedance functions, provided that possible surface waves are sufficiently resolved by the mesh. Moreover, we prove an a priori error estimate under the assumption that the absolute value of the impedance is bounded away from zero almost everywhere. Numerical experiments illustrate the performance of the method for a number of test cases in 2D and 3D with different interface conditions.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:37:j_idt1288:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500});

CiteExportLink to result list
http://hj.diva-portal.org/smash/resultList.jsf?query=&language=en&searchType=SIMPLE&noOfRows=50&sortOrder=author_sort_asc&sortOrder2=title_sort_asc&onlyFullText=false&sf=all&aq=%5B%5B%7B%22journalId%22%3A%227850%22%7D%5D%5D&aqe=%5B%5D&aq2=%5B%5B%5D%5D&af=%5B%5D $(function(){PrimeFaces.cw("InputTextarea","widget_formSmash_lower_j_idt1568_recordPermLink",{id:"formSmash:lower:j_idt1568:recordPermLink",widgetVar:"widget_formSmash_lower_j_idt1568_recordPermLink",autoResize:true});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1568_j_idt1570",{id:"formSmash:lower:j_idt1568:j_idt1570",widgetVar:"widget_formSmash_lower_j_idt1568_j_idt1570",target:"formSmash:lower:j_idt1568:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Permanent link

Cite

Citation styleapa harvard1 ieee modern-language-association-8th-edition vancouver Other style $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_lower_j_idt1586",{id:"formSmash:lower:j_idt1586",widgetVar:"widget_formSmash_lower_j_idt1586",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:lower:j_idt1586",e:"change",f:"formSmash",p:"formSmash:lower:j_idt1586",u:"formSmash:lower:otherStyle"},ext);}}});});

- apa
- harvard1
- ieee
- modern-language-association-8th-edition
- vancouver
- Other style

Languagede-DE en-GB en-US fi-FI nn-NO nn-NB sv-SE Other locale $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_lower_j_idt1597",{id:"formSmash:lower:j_idt1597",widgetVar:"widget_formSmash_lower_j_idt1597",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:lower:j_idt1597",e:"change",f:"formSmash",p:"formSmash:lower:j_idt1597",u:"formSmash:lower:otherLanguage"},ext);}}});});

- de-DE
- en-GB
- en-US
- fi-FI
- nn-NO
- nn-NB
- sv-SE
- Other locale

Output formathtml text asciidoc rtf $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_lower_j_idt1607",{id:"formSmash:lower:j_idt1607",widgetVar:"widget_formSmash_lower_j_idt1607"});});

- html
- text
- asciidoc
- rtf