Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Blomstrand, Peter
    et al.
    Jönköping University, School of Health and Welfare, HHJ, Dep. of Natural Science and Biomedicine. City Hospital Ryhov, Jönköping, Sweden.
    Engvall, Martin
    Linköping University.
    Festin, Karin
    Linköping University.
    Lindstrom, Torbjorn
    Linköping University.
    Länne, Toste
    Linköping University.
    Maret, Eva
    Karolinska University Hospital, Stockholm.
    Nyström, Fredrik H.
    Linköping University.
    Maret-Ouda, John
    Karolinska University Hospital, Stockholm.
    Östgren, Carl Johan
    Linköping University.
    Engvall, Jan
    Linköping University.
    Left ventricular diastolic function, assessed by echocardiography and tissue Doppler imaging, is a strong predictor of cardiovascular events, superior to global left ventricular longitudinal strain, in patients with type 2 diabetes2015In: European Heart Journal Cardiovascular Imaging, ISSN 2047-2404, E-ISSN 2047-2412, Vol. 16, no 9, p. 1000-1007Article in journal (Refereed)
    Abstract [en]

    Aims: The aim of the study was to determine whether left ventricular systolic function, in terms of global left ventricular longitudinal strain (GLS), and diastolic function, expressed as the ratio between early diastolic transmitral flow and mitral annular motion velocities (E/e'), can predict cardiovascular events in patients with diabetes mellitus type 2.

    Methods and results: We prospectively investigated 406 consecutive patients, aged 55-65 years, with diabetes mellitus, who participated in the CARDIPP study. Echocardiography, pulse pressure (pp), and glycosylated haemoglobin (HbA1c) were analysed. Twelve cases of myocardial infarction and seven cases of stroke were identified during the follow-up period of 67 +/- 17 months. Univariate Cox regression analysis showed that E/e' was a strong predictor of cardiovascular events (hazards ratio 1.12; 95% confidence interval 1.06-1.18, P < 0.001). E/e' was prospectively associated with cardiovascular events independent of age, sex, GLS, left ventricular ejection fraction (LVEF), pp, and HbA1c in multivariate analysis. Receiver operating characteristic curves showed that E/e' and HbA1c were the strongest predictors for cardiovascular events, both having an area under the curve (AUC) of 0.71 followed by LVEF with an AUC of 0.65 and GLS of 0.61. In a Kaplan-Meyer analysis, the cumulative probability of an event during the follow-up period was 8.6% for patients with an E/e' ratio >15 compared with 2.6% for patients with E/e' <= 15, P = 0.011.

    Conclusion: In middle-aged patients with type 2 diabetes, E/e' is a strong predictor of myocardial infarction and stroke, comparable with HbA1c and superior to GLS and LVEF.

  • 2.
    Rundqvist, Louise
    et al.
    Jönköping University, School of Health and Welfare, HHJ, Dep. of Natural Science and Biomedicine. Jönköping University, School of Health and Welfare, HHJ. Biomedical Platform.
    Engvall, Jan
    Department of Clinical Physiology, Department of Medical and Health Sciences, Linköping University, Linköping.
    Faresjö, Maria
    Jönköping University, School of Health and Welfare, HHJ, Dep. of Natural Science and Biomedicine. Jönköping University, School of Health and Welfare, HHJ. Biomedical Platform.
    Carlsson, Emma
    Jönköping University, School of Health and Welfare, HHJ, Dep. of Natural Science and Biomedicine. Jönköping University, School of Health and Welfare, HHJ. Biomedical Platform.
    Blomstrand, Peter
    Jönköping University, School of Health and Welfare, HHJ, Dep. of Natural Science and Biomedicine. Jönköping University, School of Health and Welfare, HHJ. Biomedical Platform.
    Regular endurance training in adolescents impacts atrial and ventricular size and function2017In: European Heart Journal Cardiovascular Imaging, ISSN 2047-2404, E-ISSN 2047-2412, Vol. 18, no 6, p. 681-687Article in journal (Refereed)
    Abstract [en]

    Aims: The aims of the study were to explore the effects of long-term endurance exercise on atrial and ventricular size and function in adolescents and to examine whether these changes are related to maximal oxygen uptake (VO2max).

    Methods and results: Twenty-seven long-term endurance-trained adolescents aged 13–19 years were individually matched by age and gender with 27 controls. All participants, 22 girls and 32 boys, underwent an echocardiographic examination at rest, including standard and colour tissue Doppler investigation. VO2max was assessed during treadmill exercise. All heart dimensions indexed for body size were larger in the physically active group compared with controls: left ventricular end-diastolic volume 60 vs. 50 mL/m2 (P <0.001), left atrial volume 27 vs. 19 mL/m2 (P <0.001), and right ventricular (RV) and right atrial area 15 vs. 13 and 9 vs. 7 cm2/m2, respectively (P <0.001 for both). There were strong associations between the size of the cardiac chambers and VO2max. Further, we found improved systolic function in the active group compared with controls: left ventricular ejection fraction 61 vs. 59% (P= 0.036), tricuspid annular plane systolic excursion 12 vs. 10 mm/m2 (P= 0.008), and RV early peak systolic velocity s′ 11 vs. 10 cm/s (P = 0.031).

    Conclusion: Cardiac remodelling to long-term endurance exercise in adolescents is manifested by an increase in atrial as well as ventricular dimensions. The physically active group also demonstrated functional remodelling with an increase in TAPSE and systolic RV wall velocity. These findings have practical implications when assessing cardiac enlargement and function in physically active youngsters.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf