Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Jägerbrand, Annika K.
    Statens väg- och transportforskningsinstitut, Miljö, MILJÖ.
    LED (Light-Emitting Diode) road lighting in practice: An evaluation of compliance with regulations and improvements for further energy savings2016In: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 9, no 5, article id 357Article in journal (Refereed)
    Abstract [en]

    Light-emitting diode (LED) road lighting has been widely implemented in recent years, but few studies have evaluated its performance after installation. This study investigated whether LED road lighting complies with minimum regulations in terms of traffic safety and whether improvements for energy efficiency are possible. Average road surface luminance (L), overall luminance uniformity (U0), longitudinal luminance uniformity (U1), power density (PD) and normalised power density (PN) were evaluated for 14 roads (seven designed for vehicular traffic and seven for pedestrians and bicycles). Energy savings were calculated as the percentage reduction to the minimum level of the existing lighting class or a lower lighting class and by applying a dimming schedule. The results showed that LED road lighting for vehicular traffic roads generally fulfilled the requirements, whereas that for pedestrian and bicycle roads generally corresponded to the lowest lighting class for L, and often did not meet the statutory requirements for U0 and UI. By adapting lighting levels to the minimum requirement of the existing lighting class or by dropping to a lower lighting class, vehicular traffic roads could save 6%-35% on L to lighting class M5 and 23%-61% on L to lighting class M6. A dimming schedule could lead to energy savings of 49%. There is little potential for savings on pedestrian and bicycle roads, except by implementing a dimming schedule. Thus, in general, for vehicular, pedestrian and bicycle roads, a dimming schedule can save more energy than can be achieved in general by reducing lighting class. Furthermore, since a dimming schedule can be adjusted to traffic intensity, any potential risk of compromising traffic safety is minimised.

  • 2. Solnørdal, M. T.
    et al.
    Foss, Lene
    School of Business and Economics, UiT The Arctic University of Norway, Tromsø, Norway.
    Closing the energy efficiency gap-A systematic review of empirical articles on drivers to energy efficiency in manufacturing firms2018In: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 11, no 3, article id 11030518Article in journal (Refereed)
    Abstract [en]

    Research has identified an extensive potential for energy efficiency within the manufacturing sector, which is responsible for a substantial share of global energy consumption and greenhouse gas emissions. The purpose of this study is to enhance the knowledge of vital drivers for energy efficiency in this sector by providing a critical and systematic review of the empirical literature on drivers to energy efficiency in manufacturing firms at the firm level. The systematic literature review (SLR) is based on peer-reviewed articles published between 1998 and 2016. The findings reveal that organizational and economic drivers are, from the firms' perspective, the most prominent stimulus for energy efficiency and that they consider policy instruments and market drivers to be less important. Secondly, firm size has a positive effect on the firms' energy efficiency, while the literature is inconclusive considering sectorial impact. Third, the studies are mainly conducted in the US and Western European countries, despite the fact that future increase in energy demand is expected outside these regions. These findings imply a potential mismatch between energy policy-makers' and firm mangers' understanding of which factors are most important for achieving increased energy efficiency in manufacturing firms. Energy policies should target the stimulation of management, competence, and organizational structure in addition to the provision of economic incentives. Further understanding about which and how internal resources, organizational capabilities, and management practices impact energy efficiency in manufacturing firms is needed. Future energy efficiency scholars should advance our theoretical understanding of the relationship between energy efficiency improvements in firms, the related change processes, and the drivers that affect these processes. 

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf