Change search
Refine search result
1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bellét, M
    et al.
    Jönköping University, School of Engineering, JTH. Research area Materials and Manufacturing - Casting.
    Bay, F
    Chenot, J
    Decultieux, F
    Menai, M
    Levaillant, C
    Schmidt, P
    Svensson, Ingvar L
    Jönköping University, School of Engineering, JTH. Research area Materials and Manufacturing - Casting. Jönköping University, School of Engineering, JTH, Mechanical Engineering.
    Thermomechanics of the cooling stage in casting processes: three-dimensional finite element analysis and experimental validation1996In: Metallurgical and materials transactions. B, process metallurgy and materials processing science, ISSN 1073-5615, E-ISSN 1543-1916, Vol. 27, no 1, p. 81-99Article in journal (Refereed)
  • 2.
    Carlberg, Torbjörn
    et al.
    Mid Sweden University, Sundsvall, Sweden.
    Jarfors, Anders
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing – Casting.
    On vertical drag defects formation during direct chill (DC) casting of aluminum billets2014In: Metallurgical and materials transactions. B, process metallurgy and materials processing science, ISSN 1073-5615, E-ISSN 1543-1916, Vol. 45, no 1, p. 175-181Article in journal (Refereed)
    Abstract [en]

    During air-slip direct chill casting of aluminum billets, one of the major defects occurring includes traces along the billet called vertical drags (VDs). If the VDs are too deep or too many, then they cause scraping of the billets. As in the subsequent extrusion process, the surface quality is known to impair both the productivity and quality of the profiles. In cast-house practice, many theories circulate about the causes of VD defects and how to avoid them, but in the literature, no thorough treatments have been made to explain this phenomenon. In the current study, the outer appearance, structure around, and compositions at the defects are analyzed. A theory for the formation of the defects, their cause, and how their appearance is coupled to different alloy types is presented. The segregation in the vicinity of the defects is discussed based on deformation of semisolid materials and coupled to Reynolds dilatancy ingranular materials. The theory can explain differences between 6063 and 6005 alloys.

  • 3.
    Domeij, Björn
    et al.
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Hernando, Juan Carlos
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Diószegi, Attila
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Size distribution of graphite nodules in hypereutectic cast irons of varying nodularity2018In: Metallurgical and materials transactions. B, process metallurgy and materials processing science, ISSN 1073-5615, E-ISSN 1543-1916, Vol. 49, no 5, p. 2487-2504Article in journal (Refereed)
    Abstract [en]

    An SGI was machined into 400 g cylindrical pieces and remelted in an electrical resistance furnace protected by Ar gas to produce materials ranging from SGI to CGI. The graphite morphology was controlled by varying the holding time at 1723 K (1450 °C) between 10 and 60 minutes. The discrete sectional size distribution of nodules by number density was measured on cross sections of the specimens and translated to volumetric distribution by volume fraction. Subpopulations of nodules were distinguished by fitting Gaussian distribution functions to the measured distribution. Primary and eutectic graphite, were found to account for most of the volume of nodular graphite in all cases. For holding times of 40 minutes and greater, corresponding to nodularity roughly below 40 pct, the primary subpopulation was very small and difficult to distinguish, leaving eutectic nodules as the dominant subpopulation. The mode and standard deviation of the two subpopulations were roughly independent of nodularity. Moreover, the nodular and vermicular graphite were segregated in the microstructure. In conclusion, the results suggest that the parallel development of the vermicular eutectic had small influence on the size distribution of eutectic graphite nodules.

  • 4.
    Elfsberg, Jessica
    et al.
    Royal Institute of Technology, Sweden.
    Matsushita, Taishi
    Royal Institute of Technology, Sweden.
    X-ray observation of gas evolution, flotation, and emulsification of molten carbon steel immersed in mold flux2011In: Metallurgical and materials transactions. B, process metallurgy and materials processing science, ISSN 1073-5615, E-ISSN 1543-1916, Vol. 42, no 2, p. 265-268Article in journal (Refereed)
    Abstract [en]

    At two interfacial-tension measurement experiments with the same experimental conditions, steel samples and mold flux samples of the same compositions were melted in crucibles from the same batch. During the first experiment, the steel drop melted far below its liquidus and then was emulsified. At the second experiment, the steel melted at the expected temperature but did not emulsify. The difference that can be identified is the mass of the steel samples.

  • 5.
    Fredriksson, Hasse
    et al.
    Royal Institute of Technology.
    Svensson, Ingvar L
    Jönköping University, School of Engineering, JTH. Research area Materials and Manufacturing - Casting.
    Mechanism of Pore Formation in Metals1976In: Metallurgical and materials transactions. B, process metallurgy and materials processing science, ISSN 1073-5615, E-ISSN 1543-1916, p. 599-606Article in journal (Refereed)
  • 6.
    Fredriksson, Hasse
    et al.
    Royal Institute of Technology.
    Svensson, Ingvar L
    Jönköping University, School of Engineering, JTH. Research area Materials and Manufacturing - Casting. Jönköping University, School of Engineering, JTH, Mechanical Engineering.
    On the Mechanism of Pore Formation in Metals1976In: Metallurgical and materials transactions. B, process metallurgy and materials processing science, ISSN 1073-5615, E-ISSN 1543-1916, Vol. 7, no 4, p. 599-606Article in journal (Refereed)
  • 7.
    Kaptay, George
    et al.
    University of Miskolc, Hungary.
    Matsushita, Taishi
    Kyushu Institute of Technology, Japan.
    Mukai, Kusuhiro
    Kyushu Institute of Technology, Japan.
    Ohuchi, Tatsuya
    Krosaki Harima, Japan.
    On different modifications of the capillary model of penetration of inert liquid metals into porous refractories and their connection to the pore size distribution of the refractories2004In: Metallurgical and materials transactions. B, process metallurgy and materials processing science, ISSN 1073-5615, E-ISSN 1543-1916, Vol. 35, no 3, p. 471-486Article in journal (Refereed)
    Abstract [en]

    Different modifications to the classical capillary model of penetration of liquid metals into porous refractories are presented; (1) with capillaries having different radii, (2) with zigzag capillaries, and (3) with capillaries, having periodically changing capillary radius along the path of penetration. All the modified capillary models were checked against our experimental results of measuring the penetration of liquid mercury into three types of alumina refractories, having different microstructure and pore size distribution. The maximum penetration height was measured by X-ray radiography, as a function of applied outside pressure. The model with periodically changing capillary has been found to describe the experimental data satisfactorily. This model divides the process of penetration into two stages. During the first period of “pre-penetration,” the maximum penetration height changes very slowly (but not linearly) as the outside pressure is increased in the interval between the “minimum threshold pressure” and the “maximum threshold pressure.” In the second, “bulk penetration” period, appearing above the maximum threshold pressure, the maximum height of penetration increases rapidly with outside pressure, according to the classical capillary model of penetration. The three structural model parameters of the model (minimum pore radius, maximum pore radius, and period of pore structure) were connected with the measured pore size distribution curves of the refractories through semiempirical equations. As a result, our complex semiempirical model is able to predict penetration diagrams for any inert liquid metal into any refractory of a similar type.

  • 8.
    Mukai, Kusuhiro
    et al.
    Kyushu Institute of Technology, Japan.
    Matsushita, Taishi
    Royal Institute of Technology, Sweden.
    Mills, Kenneth C.
    Imperial College, UK.
    Seetharaman, Seshadri
    Royal Institute of Technology, Sweden.
    Furuzono, Takahiro
    Kyushu Institute of Technology, Japan.
    Surface tension of liquid alloys: a thermodynamic approach2008In: Metallurgical and materials transactions. B, process metallurgy and materials processing science, ISSN 1073-5615, E-ISSN 1543-1916, Vol. 39, no 4, p. 561-569Article in journal (Refereed)
    Abstract [en]

    A formula is derived to describe the surface tensions of binary and dilute multicomponent alloys such as iron alloys. It was thermodynamically proved that the surface tension can be described by a function of the concentrations of the alloy components in bulk phase through the use of thermodynamic parameters. The formula was applied to the binary alloys, Fe-O-N and Fe-O-S systems. The described surface tensions were found to be in good agreement with the measured values.

  • 9.
    Payandeh, Mostafa
    et al.
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Sabzevar, Mohsen Haddad
    Department of Metallurgical and Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
    Jarfors, Anders E.W.
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Wessén, Magnus
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Solidification and re-melting phenomena during slurry preparation using the RheoMetal™ process2017In: Metallurgical and materials transactions. B, process metallurgy and materials processing science, ISSN 1073-5615, E-ISSN 1543-1916, Vol. 48, no 6Article in journal (Refereed)
    Abstract [en]

    The melting sequence of the enthalpy exchange material (EEM) and formation of a slurry in the RheoMetal™ process was investigated. The EEM was extracted and quenched, together with a portion of the slurry at different processing times before complete melting. The EEM initially increased in size/diameter due to melt freezing onto its surface, forming a freeze-on layer. The initial growth of this layer was followed by a period of a constant diameter of the EEM with subsequent melting and decrease of diameter. Microstructural characterization of the size and morphology of different phases in the EEM and in the freeze-on layer was made. Dendritic equiaxed grains and eutectic regions containing Si particles and Cu-bearing particles and Fe-rich particles were observed in the as-cast EEM. The freeze-on layer consisted of dendritic aluminum tilted by about 30 deg in the upstream direction, caused by the rotation of the EEM. Energy dispersion spectroscopy analysis showed that the freeze-on layer had a composition corresponding to an alloy with higher melting point than the EEM and thus shielding the EEM from the surrounding melt. Microstructural changes in the EEM showed that temperature rapidly increased to 768 K (495 °C), indicated by incipient melting of the lowest temperature melting eutectic in triple junction grain boundary regions with Al2Cu and Al5Mg8Si6Cu2 phases present. As the EEM temperature increased further the binary Al-Si eutectic started to melt to form a region of a fully developed coherent mushy state. Experimental results and a thermal model indicated that as the dendrites spheroidized near to the interface at the EEM/freeze-on layer reached a mushy state with 25 pct solid fraction, coherency was lost and disintegration of the freeze-on layer took place. Subsequently, in the absence of the shielding effect from the freeze-on Layer, the EEM continued to disintegrate with a coherency limit of a solid fraction estimated to be 50 pct.

  • 10.
    Zhang, Zuotai
    et al.
    Royal Institute of Technology, Sweden.
    Matsushita, Taishi
    Royal Institute of Technology, Sweden.
    Li, Wenchao
    Seetharaman, Seshadri
    Royal Institute of Technology, Sweden.
    Investigation of wetting characteristics of liquid iron on dense MgAlON-based ceramics by x-ray sessile drop technique2006In: Metallurgical and materials transactions. B, process metallurgy and materials processing science, ISSN 1073-5615, E-ISSN 1543-1916, Vol. 37, no 3, p. 421-429Article in journal (Refereed)
    Abstract [en]

    The wetting characteristics of liquid iron on dense MoAlON-based composite ceramics were investigated using X-ray sessile drop technique. The contact angles were measured on substrates of different composites as functions of temperature and varying partial pressures of oxygen. The results with pure argon gas showed that contact angles kept almost constant in the temperature range 1823 to 1873 K. The contact angle was found to show a slight increase with increasing boron nitride (BN) content in MgAlON-BN composites. These are attributed to the higher contact angle between BN substrate and liquid iron drop compared with that obtained for MgAlON substrate. When the CO-CO2-Ar gas mixtures were introduced into the system, the contact angle showed an initial quick decrease followed by a slow decrease and then a period of nearly constant contact angle at a given temperature corresponding to the steady-state condition. Even in this case, BN seemed to cause an increase in the equilibrium contact angle. The equilibrium contact angle was found to decrease with increasing temperature. XRD results indicated that the substrate was oxidized and the oxidation products combined with FeO formed by the oxidation of the iron drop to form FeAl2O4 and Mg1-xFexO. These were likely to form a ternary FeO-Al2O3-MgO slag or a quaternary slag by combining with B2O3. An interesting observation is that the iron drop moved away from the original site, probably due to the Marangoni effect.

  • 11.
    Zhang, Zuotai
    et al.
    Royal Institute of Technology, Sweden.
    Matsushita, Taishi
    Royal Institute of Technology, Sweden.
    Li, Wenchao
    Seetharaman, Seshadri
    Royal Institute of Technology, Sweden.
    Reactions between MgAlON-BN Composites and CaO-SiO2-Al2O3-MgO-“FeO” Slag2007In: Metallurgical and materials transactions. B, process metallurgy and materials processing science, ISSN 1073-5615, E-ISSN 1543-1916, Vol. 38, no 2, p. 231-241Article in journal (Refereed)
    Abstract [en]

    The reactions between MgAlON and MgAlON-BN composites and synthetic CaO-SiO2-Al2O3-MgO-“FeO” slag at different temperatures were investigated under stagnant condition using the ‘‘finger’’ experiment as well as X-ray sessile drop methods. The corrosion rate was denoted by the radius difference between the initial radius of the specimen rod and the unreacted core at definite time intervals. The experimental results showed that the radius difference is linear with the square root of time. This indicated that the diffusion of ions in the slag through the product layer is the rate-determining step. One product layer was observed between the unreacted core and slag. X-ray images showed that gas bubbles were generated during the slag penetration. The slag penetration process depends strongly on the temperature. The apparent activation energy was evaluated to be 376.4 kJ/mol. The FeO addition into slag increased the slag corrosion rate. This is most probably due to the decrease of the slag viscosity, because the Fe+2 generally behaves as a network breaker. Furthermore, MgAlON and boron nitride (BN) can be oxidized by FeO, which also increased the slag corrosion rate. The slag corrosion rate decreased with increasing BN content. This can be explained by the fact that the grain boundary interfacial energy decreases with the increase of BN content and nonwetting of BN by molten slag compared to pure MgAlON.

1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf