Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Drar, Hassan
    et al.
    Svensson, Ingvar L
    Jönköping University, School of Engineering, JTH. Research area Materials and Manufacturing - Casting.
    Characterization of tensile properties and microstructures in directionally solidified Al-Si alloys using linear roughness index2006In: Materials Characterization, ISSN 1044-5803, E-ISSN 1873-4189, Vol. 57, no 4-5, p. 244-258Article in journal (Refereed)
  • 2.
    Esmaily, M.
    et al.
    Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
    Shahabi-Navid, M.
    Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
    Mortazavi, N.
    Department of Applied Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
    Svensson, J. E.
    Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
    Halvarsson, M.
    Wessen, M.
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing – Casting.
    Jarfors, A. E. W.
    Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing – Casting.
    Johansson, L. G.
    Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
    Microstructural characterization of the Mg-Al alloy AM50 produced by a newly developed rheo-casting process2014In: Materials Characterization, ISSN 1044-5803, E-ISSN 1873-4189, Vol. 95, p. 50-64Article in journal (Refereed)
    Abstract [en]

    The microstructure of rheo-cast Mg-Al alloy AM50 produced by the RheoMetal process is investigated and compared with the same alloy produced by conventional high pressure die casting. The size and arrangement of microstructural constituents and pores are characterized quantitatively using image analyzing techniques. The nearest neighbor distribution of the intermetallic particles is determined. The area fraction of porosity in rheo-cast AM50 is about half that found in the high pressure die cast alloy. In rheo-cast material, the distribution of p phase (Mg17Al12) is relatively uniform throughout the cast. In contrast, the beta phase particles tend to form macroscopic agglomerates in high pressure die cast material. The externally solidified grains in the rheo-cast material exhibit a smaller aluminum gradient than in the high pressure die cast alloy. This indicates that the solidification of the rheo-cast material is closer to equilibrium. (C) 2014 Elsevier Inc. All rights reserved.

  • 3.
    Hernando, Juan Carlos
    et al.
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Ghassemali, Ehsan
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Diószegi, Attila
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    The morphological evolution of primary austenite during isothermal coarsening2017In: Materials Characterization, ISSN 1044-5803, E-ISSN 1873-4189, Vol. 131, p. 492-499Article in journal (Refereed)
    Abstract [en]

    The morphological evolution of primary austenite in an industrial hypoeutectic lamellar cast iron was studied under isothermal conditions for coarsening times varying from 0 min to 96 h. The dendritic austenite structure formed during the primary solidification suffered major morphological changes during the isothermal coarsening process. After a sufficient coarsening time, dendrite fragmentation, globularization, and coalescence of austenite were studied using electron backscatter diffraction (EBSD) technique. This study confirmed that the secondary dendrite arm spacing (SDAS) is an inappropriate length scale to describe the primary austenite coarsening process for longer times. The application of shape independent quantitative parameters confirmed the reduction of the total interfacial area during microstructural coarsening. The modulus of the primary austenite, Mγ, which represents the volume-surface ratio for the austenite phase, and the spatial distribution of the austenite particles, measured as the nearest distance between the center of gravity of neighboring particles, Dγ, followed a linear relation with the cube root of coarsening time during the whole coarsening process. The mean curvature of the austenite interface, characterized through stereological relations, showed a linear relation to Mγ and Dγ, allowing the quantitative characterization and modeling of the complete coarsening process of primary austenite.

  • 4.
    Kasvayee, Keivan Amiri
    et al.
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Ghassemali, Ehsan
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Salomonsson, Kent
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Sujakhu, Surendra
    Nanyang Technological University, School of Mechanical and Aerospace Engineering, Singapore.
    Castagne, Sylvie
    KU Leuven, Department of Mechanical Engineering, Leuven, Belgium.
    Jarfors, Anders E.W.
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
    Microstructural strain mapping during in-situ cyclic testing of ductile iron2018In: Materials Characterization, ISSN 1044-5803, E-ISSN 1873-4189, Vol. 140, p. 333-339Article in journal (Refereed)
    Abstract [en]

    This paper focuses on local strain distribution in the microstructure of high silicon ductile iron during cyclic loading. In-situ cyclic test was performed on compact-tension (CT) samples inside the scanning electron microscope (SEM) to record the whole deformation and obtain micrographs for microstructural strain measurement by means of digital image correlation (DIC) technique. Focused ion beam (FIB) milling was used to generate speckle patterns necessary for DIC measurement. The equivalent Von Mises strain distribution was measured in the microstructure at the maximum applied load. The results revealed a heterogeneous strain distribution at the microstructural level with higher strain gradients close to the notch of the CT sample and accumulated strain bands between graphite particles. Local strain ahead of the early initiated micro-cracks was quantitatively measured, showing high strain localization, which decreased by moving away from the micro-crack tip. It could be observed that the peak of strain in the field of view was not necessarily located ahead of the micro-cracks tip which could be because of the (i) strain relaxation due to the presence of other micro-cracks and/or (ii) presence of subsurface microstructural features such as graphite particles that influenced the strain concentration on the surface.

    The full text will be freely available from 2020-04-12 00:00
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf