This thesis report presents the work of analysing current challenges in Multidisciplinary Analysis systems. Exemplary the system of an aerospace supplier, GKN Aerospace Sweden AB, is examined and several suggestions for improve- ment are implemented. The Multidisciplinary Analysis system, with company internal name Engineering Workbench, employs a set-based approach in exploring the design-space for jet engine components. A number of design cases with varied geometrical and environmental parameters is generated using Design of Experiment sampling methods. Each design case is then subjected to a set of analyses. Using the analyses results, a surrogate model of the parts behaviour in relation to the input parameters is created. This enables the product developer to get a general view of the model’s behaviour and also to react to changes in product requirements.
Design research methodology is applied to further develop the Engineering Workbench into a versatile design support system and expand the functionality to include producibility assessment. In its original state, the execution of a study requires explicit domain knowledge and programming skills in several disciplines. The execution of a study is often halted by minor process errors. Several methods to improve this status are suggested and tested. Among those are the introduction of an interface to improve the usability and expand the range of possible users. Further the integration of a four level system architecture supporting a modular structure. Producibility assessment is enabled by developing an expert system where geometrical and simulation results can be caught, analysed and evaluated to produce producibility metrics. Evaluation of the implemented solutions indicate a step in the right direction. Further development towards Multidisciplinary Optimisation, involving experts in information technologies as well as case- based reasoning techniques is suggested and discussed.
The aero-engine industry is continuously faced with new challenging cost and environmental requirements. This forces company's, active in the industry, to work toward more fuel efficient engines with less environmental impact at a lower cost. This paper presents a method for assessing producibility of large sets of components within aircraft engines to enable a Set-Based Concurrent Engineering development approach. A prototype system has been developed aimed at enabling weldability analysis at a sub-supplier within the aero-engine industry. It is a part of a multi-objective decision support tool used in early design stages. The tool produces sets of CAD-models reaching the hundreds for different analyses, mainly focusing on performance aspects within structural analysis, aerodynamics and thermodynamics.
A practical method has been suggested for solder joint thermal fatigue prognostics, which enables real-time fatigue calculations based on uncompressed temperature data embedded in a host system that performs safety-critical operations. The accuracy of the prognosticated remaining useful life depends on the level of details captured in the model, and the level of confidence from validation efforts.
This thesis is a continuation of design automation studies within research projects financed by VINNOVA (the Swedish Governmental Agency for Innovation Systems) and Knowledge foundation that contributed to the development of producibility assessment system at a global aerospace products supplier, GKN Aerospace Sweden. A case study was carried at the company on Turbine Rear Structure (TRS) component design of a jet engine with the main objective to evaluate weld producibility assessment tools and to demonstrate system’s performance in multi-disciplinary design environment. The context of this thesis is a set-based product design development where several studies, i.e. thermal, structural, aerodynamic etc. are carried concurrently to gather knowledge between their parameter relations. The thesis contributes to the goal of fully integrated producibility assessment in multi-disciplinary studies to support product development process.
The problems encountered during the thesis execution involved systematic analysis setup to extract and verify CAD geometry data, assessment of meaningfulness of producibility indicators, development of semi-automated data post-processing module and relating product design to its manufacturing aspects. Commercial and in-house developed software were used extensively to demonstrate the results of the system with the help of continuous company support to mitigate indispensable bottlenecks along the way.
The work has led to systematic improvements, determined assessment limitations and most relevant weld producibility aspects. Collected feedback to evaluate prepared demonstrator showed promising results to support product design decisions considering both performance and producibility.
Today’s aerospace assembly is a huge manual task according to strictly controlled instructions, where differentoperators are responsible for different areas. This harmonizes with the overall lean approach, but the assemblyis very time-consuming and some tasks are not ergonomically friendly, such as assembly tasks inside a wingbox. Here, it could be possible to increase automation with the aim to facilitate a shorter assembly time andergonomically improved workplace. This paper will present different assembly cell concepts utilizing differentsafety strategies to achieve human-robot cooperation in an aerospace industry assembly line. These conceptswill be discussed in relation to a case in the aerospace industry. The paper concludes with suggestions forthree conceptual human-robot cooperation layouts. These are based on previous research in the areas ofsafety and human-robot cooperation, in combination with observations from an aerospace assembly line.
This paper proposes a method to indicate potential problems when planning dye penetrant and x-ray inspection of welded components. Inspection has been found to be an important part of the manufacturability evaluation made in a large CAD-based parametric environment for making multidisciplinary design simulations in early stages of design at an aircraft component manufacturer. The paper explains how the proposed method is to be included in the design platform at the company. It predicts the expected probability of detection of cracks (POD) in situations where the geometry of the parts is unfavourable for inspection so that potential problems can be discovered and solved in early stages. It is based on automatically extracting information from CAD-models and making a rule-based evaluation. It also provides a scale for how favourable the geometry is for inspection. In the paper it is also shown that the manufacturability evaluation need to take into consideration the expected stresses in the structures, highlighting the importance of multi-disciplinary simulations.
This paper addresses the automated assessment of manufacturability of air-craft engine components in the early stages of design, focused on the welding process. It is a novel part of a multi-objective decision support tool for design evaluation, currently running at a manufacturer of jet engine components. The paper briefly describes the tool and how it impacts the product development process. Further, the paper presents an integrated method for manufacturability assessment by finding welding processes that complies with all geometrical and other constraints found in the CAD-models of the conceptual engine. Here, preferences made by manufacturing engineers serves as a base for a manufacturability index so that different parameter settings in the CAD-models can be compared to find the best parameter settings, considering the trade-off with other performance criteria’s of the engine.