Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Dislocation Density Model for Flow Stress of AZ91D Magnesium Alloy-Effect of Temperature and Microstructure
Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing – Casting.ORCID iD: 0000-0002-9886-9710
Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing – Casting.
Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing – Casting.
Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing – Casting.ORCID iD: 0000-0002-7527-719X
Show others and affiliations
(English)In: International journal of plasticity, ISSN 0749-6419, E-ISSN 1879-2154Article in journal (Refereed) Submitted
National Category
Metallurgy and Metallic Materials
Identifiers
URN: urn:nbn:se:hj:diva-28489OAI: oai:DiVA.org:hj-28489DiVA: diva2:877376
Available from: 2015-12-07 Created: 2015-12-07 Last updated: 2015-12-07
In thesis
1. As-cast AZ91D Magnesium Alloy Properties- Effect of Microstructure and Temperature
Open this publication in new window or tab >>As-cast AZ91D Magnesium Alloy Properties- Effect of Microstructure and Temperature
2015 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Magnesium and magnesium alloys are used in a wide variety of structural applications including automotive, aerospace, hand tools and electronic industries thanks to their light weight, high specific strength, adequate corrosion resistance and good castability. Al and Zn are the primary alloying elements in commercial Mg alloys and commonly used in automotive industries. AZ91 is one of the most popular Mg alloys containing 9% Al and 1% Zn. Hence, lots of research have been done during last decades on AZ91D. However, the existing data concerning mechanical properties and microstructural features showed large scatter and is even contradictory. This work focused on the correlation between the microstructure and the mechanical properties of as-cast AZ91 alloy. An exhaustive characterization of the grain size, secondary dendrite arm spacing (SDAS) distribution, and fraction of Mg17Al12 using optical and electron backscattered diffraction (EBSD) was performed. These microstructural parameters were correlated to offset yield point (Rp0.2), fracture strength and elongation to fracture. It was understood that the intermetallic phase, Mg17Al12, plays an important role in determining the mechanical and physical properties of the alloy at temperature range from room temperature up to 190oC. It was realized that by increasing the Mg17Al12 content above 11% a network of intermetallic may form. During deformation this rigid network should break before any plastic deformation happen. Hence, increase in Mg17Al12 content resulted in an increase in offset yield point. The presence of this network was supported by study of thermal expansion behaviour of the alloy containing different amount of Mg17Al12. A physically-based model was adapted and validated in order to predict the flow stress behaviour of as-cast AZ91D at room temperature up to 190ºC for various microstructures. The model was based on dislocation glide and climb in a single-phase (matrix) material containing reinforcing particles. The temperature dependant variables of the model were quite well correlated to the underlying physics of the material.

Place, publisher, year, edition, pages
Jönköping: Jönköping University, School of Engineering, 2015
Series
JTH Dissertation Series, 10
Keyword
Magnesium alloys, As-cast, AZ91D, Mechanical properties, Microstructural scale effect, Physical modelling
National Category
Materials Engineering
Identifiers
urn:nbn:se:hj:diva-28467 (URN)978-91-87289-11-8 (ISBN)
Presentation
2015-11-06, Room E1405, School of Engineering, Jönköping University, Jönköping, 10:00 (English)
Opponent
Supervisors
Available from: 2015-12-07 Created: 2015-12-02 Last updated: 2016-01-14Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Dini, HodaSvoboda, AlesAndersson, Nils-EricGhassemali, EhsanJarfors, Anders E.W.
By organisation
JTH. Research area Materials and manufacturing – Casting
In the same journal
International journal of plasticity
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar

Total: 320 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf