The aim of the present study was to carry out a microstructural and mechanical characterization of the A354 (Al-Si-Cu-Mg) cast aluminum alloy. The effect of microstructure on the tensile behavior was evaluated by testing samples with different Secondary Dendrite Arm Spacing, (SDAS) values (20-25 mu m and 50-70 mu m for fine and coarse microstructure, respectively), which were produced through controlled casting conditions. The tensile behavior of the alloy was evaluated both at room and elevated temperature (200 degrees C), in the heat treated and averaged (exposure at 210 degrees C for 41 h, after heat treatment) conditions. Optical, scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM) were used for microstructural investigations. Experimental data confirmed the significant role of microstructural coarseness on the tensile behavior of A354 alloy. Ultimate tensile strength and elongation to failure strongly increased with the decrease of SDAS. Moreover, solidification rate influenced other microstructural features, such as the eutectic silicon morphology as well as the size of the intermetallic phases, which in turn also influenced elongation to failure. Coarsening of the strengthening precipitates was induced by overaging, as observed by STEM analyses, thus leading to a strong reduction of the tensile strength of the alloy, regardless of SDAS. Tensile properties of the alloy sensibly decrease at elevated temperature (200 degrees C) in all the investigated heat treatment conditions. (C) 2015 Elsevier B.V. All rights reserved.