Open this publication in new window or tab >>Show others...
2017 (English)In: International Journal of Mechanical Sciences, ISSN 0020-7403, E-ISSN 1879-2162, Vol. 121, p. 164-170Article in journal (Refereed) Published
Abstract [en]
The flow stress of an as-cast Al-Si based alloy was modeled using a dislocation density based model. The developed dislocation density-based constitutive model describes the flow curve of the alloy with various microstructures at quite wide temperature range. Experimental data in the form of stress-strain curves for different strain rates ranging from 10−4 to 10−1 s−1 and temperatures ranging from ambient temperature up to 400 °C were used for model calibration. In order to model precisely the hardening and recovery process at elevated temperature, the interaction between vacancies and dissolved Si was included. The calibrated temperature dependent parameters for different microstructure were correlated to the metallurgical event of the material and validated. For the first time, a dislocation density based model was successfully developed for Al-Si cast alloys. The findings of this work expanded the knowledge on short strain tensile deformation behaviour of these type of alloys at different temperature, which is a critical element for conducting a reliable microstructural FE-simulation.
Place, publisher, year, edition, pages
Elsevier, 2017
Keywords
Aluminium cast alloy; Dislocation density; Eutectic phase; Si precipitation; Si solute; Vacancy concentration
National Category
Materials Engineering
Identifiers
urn:nbn:se:hj:diva-27375 (URN)10.1016/j.ijmecsci.2017.01.003 (DOI)000395216300015 ()2-s2.0-85008703756 (Scopus ID)
Note
Finns som manuskript med titeln A Dislocation Density Based Yield Stress Model for as-cast EN AC-46000 Alloy i licentiatuppsats.
2015-06-222015-06-222017-12-12Bibliographically approved