Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A generic model to predict the ultimate tensile strength in pearlitic lamellar graphite iron
Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing – Casting. Swerea Swecast. (Foundry Technology)
Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing – Casting. (Foundry Technology)
2014 (English)In: Materials Science & Engineering: A, ISSN 0921-5093, E-ISSN 1873-4936, Vol. 618, p. 161-167Article in journal (Refereed) Published
Abstract [en]

Varying the carbon contents, chemical composition and solidification rate greatly influences the microstructural morphology in lamellar graphite iron resulting in large variations in material properties. Traditionally, ultimate tensile strength (UTS) is used as the main property for the characterisation of lamellar graphite iron alloys under static loads. The main models found in the literature for predicting UTS of pearlitic lamellar graphite iron are based on either regression analysis on experimental data or on modified Griffith or Hall-Petch equation.

In pearlitic lamellar graphite iron the primary austenite transformed to pearlite reinforces the bulk material while the graphite flakes which are embedded in an iron matrix reduce the strength of the material. Nevertheless a dominant parameter which can be used to define the tensile strength is the characteristic distance between the pearlite grains defined as the maximum continuous defect size in the bulk material, which in this work is expressed by the newly introduced parameter the Diameter of Interdendritic Space. The model presented here covers the whole spectrum of carbon content from eutectic to hypoeutectic composition, solidified at different cooling rates typical for both thin and thick walled complex shaped castings.

Place, publisher, year, edition, pages
2014. Vol. 618, p. 161-167
Keywords [en]
Lamellar graphite iron; Tensile properties; Primary austenite; Carbon content; Cooling rate
National Category
Metallurgy and Metallic Materials
Identifiers
URN: urn:nbn:se:hj:diva-25448DOI: 10.1016/j.msea.2014.08.061ISI: 000344439500020Scopus ID: 2-s2.0-84907512331OAI: oai:DiVA.org:hj-25448DiVA, id: diva2:774946
Available from: 2014-12-30 Created: 2014-12-30 Last updated: 2019-03-08Bibliographically approved
In thesis
1. Dendritic morphology and ultimate tensile strength of pearlitic lamellar graphite iron
Open this publication in new window or tab >>Dendritic morphology and ultimate tensile strength of pearlitic lamellar graphite iron
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The continued development, of cylinder blocks and cylinder heads for heavy truck engines that are made of lamellar graphite iron (LGI) is focused on achieving high ultimate tensile strength (UTS) whilst conforming to environmental regulations. The purpose of this work is to further improve the tensile strength as well as the predictive engineering tools for optimization of LGI aimed to enhance the efforts for producing lighter and sustainable components without sacrificing performance.

Varying the carbon content and solidification rate greatly influences the amount and the coarseness of the microstructure phases resulting in large variations of material properties. The experimental data set provided in this work covers a comprehensive range of microstructure and the UTS values aimed to be used in a holistic model for UTS prediction.

In pearlitic LGI the primary austenite dendritic network reinforces the material while the distance between the pearlite grains defines the maximum continuous defect size. The novel parameter of Hydraulic Diameter of the Inter-dendritic Phase (DIPHyd) has been introduced in this work to express the amount and the coarseness of the space between the pearlite grains that have been solidified as primary austenite dendrites. The DIPHyd has proven to be the generic parameter that defines the maximum continuous defect size in the material, and hence it has been applied in modified Griffith and Hall-Petch models for prediction of UTS.

Microstructure models have been developed for prediction of the key microstructure parameters that define the strength of LGI. These models have been combined with the modified Griffith and Hall-Petch equations and incorporated into casting simulation software to enable the strength prediction for pearlitic LGI alloys with various carbon contents. The results show that the developed models can be successfully applied, along with the simulation tools across a wide range of carbon content from eutectic to hypoeutectic composition, for the alloys solidified at various cooling rates typical for both thin and thick walled complex shaped iron castings.

Place, publisher, year, edition, pages
Jönköping: Jönköping University, School of Engineering, 2019. p. 47
Series
JTH Dissertation Series ; 38
Keywords
Lamellar graphite iron, Primary austenite dendrite, Ultimate tensile strength, Microstructure model
National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:hj:diva-43228 (URN)978-91-87289-40-8 (ISBN)
Public defence
2019-01-16, 10:30 (English)
Opponent
Supervisors
Available from: 2019-03-08 Created: 2019-03-04 Last updated: 2019-03-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Diószegi, Attila

Search in DiVA

By author/editor
Diószegi, Attila
By organisation
JTH. Research area Materials and manufacturing – Casting
In the same journal
Materials Science & Engineering: A
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 444 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf