Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Design Rationale Management – a Proposed Cloud Solution
Jönköping University, School of Engineering, JTH. Research area Product Development - Computer supported engineering design. Jönköping University, School of Engineering, JTH, Mechanical Engineering.ORCID iD: 0000-0003-1162-724X
Jönköping University, School of Engineering, JTH. Research area Product Development - Computer supported engineering design.
Jönköping University, School of Engineering, JTH. Research area Product Development - Computer supported engineering design.ORCID iD: 0000-0002-3677-8311
2014 (English)In: Advances in Transdisciplinary Engineering: Moving Integrated Product Development to Service Clouds in the Global Economy / [ed] Jianzhong Cha, Shuo-Yan Chou, Josip Stjepandić, Richard Curran, Wensheng Xu, Amsterdam: IOS Press, 2014, 204-214 p.Conference paper, Published paper (Refereed)
Abstract [en]

Due to increasing complexity of modern products it is many times impossible for single individual engineers to fully grasp the product they are a part of developing. Valuable time during the product development is therefore spent searching for knowledge about different aspect of the product. To enable engineers finding right knowledge in different situations, the knowledge must first of all exist. Secondly, it needs to be structured and thirdly, it needs to be accessible. In this paper all of these three aspects of design rationale (reasons for why the product is designed the way it is) are addressed with the main focus on the latter one, accessibility. An information model is presented that can be used to structure the design rationale. It also presents a schematic overview of how a cloud solution could be realized using the information model to make a complete system for instantly capturing, filtering and accessing design rationale in a contextual manner.

To enable the instant and contextual capture, filtering and access of the design rationale, the design rationale management systems should be present to the engineers everywhere in the digital environment, ready for service. It should also include functions that make the design rationale shared to all privileged users making sure everyone has updated versions of the stored knowledge.

In this work the main ideas of a method for instant and contextual capture, filtering and access of the design rationale are introduced and a pilot system described as a proof of concept. The pilot system can be used to capture, filter and access design rationale across and within text-documents, spread sheets and CAD-models.

Place, publisher, year, edition, pages
Amsterdam: IOS Press, 2014. 204-214 p.
Series
Advances in Transdisciplinary Engineering
Keyword [en]
Design Rationale, Product Development, Knowledge Management, Design Knowledge Reuse, Information Retrieval
National Category
Mechanical Engineering
Identifiers
URN: urn:nbn:se:hj:diva-24737DOI: 10.3233/978-1-61499-440-4-204ISBN: 978-1-61499-439-8 (print)ISBN: 978-1-61499-440-4 (print)OAI: oai:DiVA.org:hj-24737DiVA: diva2:747033
Conference
21th ISPE International Conference on Concurrent Engineering
Available from: 2014-09-15 Created: 2014-09-15 Last updated: 2016-08-12Bibliographically approved
In thesis
1. Support Maintenance of Design Automation Systems - A Framework to Capture, Structure and Access Design Rationale
Open this publication in new window or tab >>Support Maintenance of Design Automation Systems - A Framework to Capture, Structure and Access Design Rationale
2015 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The ability to innovate and launch customized products that are well matched to customer demands is a competitive factor for many manufacturing companies. Development of highly customized products requires following an engineer-to-order business process to allow the products to be modified or adapted to new customers’ specifications, which brings more value to the customer and profit to the company.

Design of a new product variant involves a large amount of repetitive and time consuming tasks but also information handling activities that are sometimes beyond human capabilities. Such work that does not rely so much on creativity can be carried out more efficiently by applying design automation systems. Design automation stands out as an effective means of cutting costs and lead time for a range of well-defined design activities and is mainly considered as a computer-based tool that processes and manipulates the design information.

Adaptation and variant design usually concern generating a new variant of a basic design, which has been developed and proved previously, according to new customer’s demands. In order to efficiently generate a new variant, a deep understanding of the previous design is essential. Such understanding can be achieved by access to the design rationale explaining the reasons and justifications behind the design.

Maintenance of design automation systems is essential to retain their usefulness over time and adapt them to new circumstances. New circumstances are, for example, introduction of new variants of existing products, changes in design rules in order to meet new standards or legislations, or changes in technology. To maintain a design automation system, updating the design knowledge (e.g. design rules) is required. Use of design rationale will normally become a necessity to allow a better understanding of the knowledge. Consequently, there is a need of principles and methods to enable capture, structure, and access design rationale.

In this study, a framework for modeling design knowledge and managing design rationale in order to support maintenance of design automation systems is presented. Managing of design rationale concerns enabling capture, structure, and access to design rationale. In order to evaluate the applicability of the framework, the findings are tested through design automation systems in two case companies.

Place, publisher, year, edition, pages
Jönköping: School of Engineering, 2015. 75 p.
Series
JTH Dissertation Series, 11, 2015
Keyword
Design automation system, computer supported engineering design, design rationale, and traceability.
National Category
Other Mechanical Engineering
Identifiers
urn:nbn:se:hj:diva-28172 (URN)978-91-87289-12-5 (ISBN)
Presentation
2015-11-06, E1405, Gjuterigatan 5, Jönköping, 13:00 (English)
Opponent
Supervisors
Projects
ImpactAdapt
Funder
Knowledge Foundation
Available from: 2015-10-19 Created: 2015-10-14 Last updated: 2015-10-19Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Johansson, JoelPoorkiany, MortezaElgh, Fredrik
By organisation
JTH. Research area Product Development - Computer supported engineering designJTH, Mechanical Engineering
Mechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 501 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf