Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Fictitious domain methods using cut elements: III. A stabilized Nitsche method for Stokes’ problem
University College London.
Jönköping University, School of Engineering, JTH, Mechanical Engineering. Jönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization.
2014 (English)In: Mathematical Modelling and Numerical Analysis, ISSN 0764-583X, E-ISSN 1290-3841, Vol. 48, no 3, p. 859-874Article in journal (Refereed) Published
Abstract [en]

We extend the classical Nitsche type weak boundary conditions to a fictitious domain setting. An additional penalty term, acting on the jumps of the gradients over element faces in the interface zone, is added to ensure that the conditioning of the matrix is independent of how the boundary cuts the mesh. Optimal a priori error estimates in the H 1- and L 2-norms are proved as well as an upper bound on the condition number of the system matrix.

Place, publisher, year, edition, pages
2014. Vol. 48, no 3, p. 859-874
National Category
Fluid Mechanics and Acoustics Computational Mathematics
Identifiers
URN: urn:nbn:se:hj:diva-23717DOI: 10.1051/m2an/2013123ISI: 000335388600009Scopus ID: 2-s2.0-84857789102Local ID: JTHProduktutvecklingISOAI: oai:DiVA.org:hj-23717DiVA, id: diva2:713397
Available from: 2014-04-22 Created: 2014-04-22 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Hansbo, Peter

Search in DiVA

By author/editor
Hansbo, Peter
By organisation
JTH, Mechanical EngineeringJTH. Research area Product Development - Simulation and Optimization
In the same journal
Mathematical Modelling and Numerical Analysis
Fluid Mechanics and AcousticsComputational Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 551 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf