Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Critical Description of Defects and Mechanical Behaviour in Casting Process Modelling of Light Metals for Automotive Use
Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing – Casting.ORCID iD: 0000-0002-0101-0062
Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing – Casting.ORCID iD: 0000-0001-6481-5530
Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing – Casting.ORCID iD: 0000-0003-2671-9825
Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing – Casting.
2013 (English)In: Proceedings of the Twenty Second International Conference on Processing and Fabrication of Advanced Materials (PFAM-XXII), Singapore, 18-20 December, 2013, 2013Conference paper, Published paper (Refereed)
Place, publisher, year, edition, pages
2013.
National Category
Metallurgy and Metallic Materials
Identifiers
URN: urn:nbn:se:hj:diva-23372OAI: oai:DiVA.org:hj-23372DiVA, id: diva2:692799
Conference
22nd International Conference on Processing and Fabrication of Advanced Materials (PFAM XXII), Singapore, 18-20 December, 2013
Available from: 2014-02-01 Created: 2014-02-01 Last updated: 2017-08-14Bibliographically approved
In thesis
1. Simulation of Microstructure-based Mechanical Behaviour of Cast Components
Open this publication in new window or tab >>Simulation of Microstructure-based Mechanical Behaviour of Cast Components
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In the process of developing cast iron and cast aluminium components, a high level of co-operation between product development and production is of great importance. From an engineering standpoint, this co-operation is limited early in the product development phase by e.g. a lack of established methods for the consideration of local variations in the mechanical behaviour of a finished component.

This thesis aims to increase the possibilities for co-operation between product development and production during the product realisation process by introducing and studying the use of predicted local mechanical behaviour in structural analyses of cast components. A literature review of existing simulation methods and a work on characterisation of mechanical behaviour from microstructural features have been performed to identify important knowledge gaps. A simulation strategy has been formulated which is able to predict local mechanical behaviour throughout the entire component, and to incorporate this into a Finite Element Method (FEM) simulation of the structural behaviour of the component. In the simulation strategy, componentspecific microstructure-based mechanical behaviour is predicted using a casting process simulation. A computer program was developed to create FEM material definitions which capture the local variations in mechanical behaviour throughout the component. Using a material reduction technique, the local mechanical behaviour can be incorporated without increasing the FEM simulation time.

The relevance of the simulation strategy was experimentally verified on cast aluminium samples, where the strain field was observed using Digital Image Correlation (DIC). It was found that the local variations in mechanical behaviour cause a stress-strain distribution that deviates from that predicted by a homogeneous material description, indicating the importance of calculating with and including such variations in material behaviour in FEM simulations. Numerical investigations demonstrate the strategy’s relevance for predicting the behaviour of cast aluminium and ductile iron components.

Place, publisher, year, edition, pages
School of Engineering, Jönköping University, 2014. p. 51
Series
JTH Dissertation Series ; 3
Keywords
Component behaviour, structural analysis, mechanical behaviour, casting process simulation, Finite Element Method (FEM) simulation
National Category
Metallurgy and Metallic Materials Applied Mechanics
Identifiers
urn:nbn:se:hj:diva-23695 (URN)978-91-87289-04-0 (ISBN)
Public defence
2014-05-09, E1405, Tekniska Högskolan, Gjuterigatan 5, Jönköping, 10:00 (English)
Opponent
Supervisors
Available from: 2014-04-14 Created: 2014-04-11 Last updated: 2014-04-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Jarfors, AndersSeifeddine, SalemOlofsson, JakobSvensson, Ingvar L.

Search in DiVA

By author/editor
Jarfors, AndersSeifeddine, SalemOlofsson, JakobSvensson, Ingvar L.
By organisation
JTH. Research area Materials and manufacturing – Casting
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 342 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf