Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
An Eulerian Approach for Simulating Frictional Heating in Disc-Pad Systems
Jönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization.
2011 (English)In: European journal of mechanics. A, Solids, ISSN 0997-7538, E-ISSN 1873-7285, Vol. 30, no 5, 673-683 p.Article in journal (Refereed) Published
Abstract [en]

Thermal stresses as a result from frictional heating must be considered when designing disc brakes, clutches or other rotating machine components with sliding contact conditions. The rotational symmetry of the disc in these kind of applications makes it possible to model these systems using an Eulerian approach instead of a Lagrangian framework. In this paper such an approach is developed and implemented. The disc is formulated in an Eulerian frame where the convective terms are defined by the angular velocity. By utilizing the Eulerian framework, a node-to-node formulation of the contact interface is obtained, producing most accurate frictional heat power solutions. The energy balance of the interface is postulated by introducing an interfacial temperature. Both frictional power and contact conductances are included in this energy balance. The contact problem is solved by a non-smooth Newton method. By adopting the augmented Lagrangian approach, this is done by rewriting Signorini’s contact conditions to an equivalent semi-smooth equation. The heat transfer in the disc is discretized by a Petrov–Galerkin approach, i.e. the numerical difficulties due to the non-symmetric convective matrix appearing in a pure Galerkin discretization is treated by following the streamline-upwind approach. In such manner a stabilization is obtained by adding artificial conduction along the streamlines. For each time step the thermo-elastic contact problem is first solved for the temperature field from the previous time step. Then, the heat transfer problem is solved for the corresponding frictional power. In such manner a temperature history is obtained sequentially via the trapezoidal rule. In particular the parameter is set such that both the Crank–Nicolson and the Galerkin methods are utilized. The method seems very promising. This is demonstrated by solving a two-dimensional benchmark as well as a real disc brake system in three dimensions.

Place, publisher, year, edition, pages
2011. Vol. 30, no 5, 673-683 p.
National Category
Applied Mechanics
Identifiers
URN: urn:nbn:se:hj:diva-17429DOI: 10.1016/j.euromechsol.2011.04.004OAI: oai:DiVA.org:hj-17429DiVA: diva2:483970
Available from: 2012-01-26 Created: 2012-01-26 Last updated: 2016-01-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Strömberg, Niclas
By organisation
JTH. Research area Product Development - Simulation and Optimization
In the same journal
European journal of mechanics. A, Solids
Applied Mechanics

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 197 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf