Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Automatic preparation of CAD-generated solid geometry for FE-meshing
Jönköping University, School of Engineering, JTH, Mechanical Engineering. Jönköping University, School of Engineering, JTH. Research area Computer Supported Engineering Design. Produktutveckling.
Jönköping University, School of Engineering, JTH, Mechanical Engineering. Jönköping University, School of Engineering, JTH. Research area Computer Supported Engineering Design.
2005 (English)In: NAFEMS World Congress 2005, 2005, p. 101-Conference paper, Published paper (Refereed)
Abstract [en]

In recent years the computing power and meshing algorithms have developed to a state where FEA problems can often be solved directly using the solid geometry. However for complex geometry and complicated calculations there will for the foreseeable future be a need for geometrical idealizations.

To reduce the time spent on making geometrical idealizations in repetitive FEA, a CAD-integrated KBES (Knowledge Based Engineering System) has been developed. The KBES creates a surface idealization from a thin-walled solid by utilizing generic modelling knowledge and by registering information about the CAD-specific features which the designer uses to define the solid geometry. From this information a corresponding surface idealization is created in the same CAD-system. This allows an updated and parametric geometry idealization of the complete CAD-geometry to be created with a degree of automation directly in the CAD-system.

Primarily the mid-surfaces oriented in the tooling draft direction are created by evaluating the sketches which the features of the CAD-model are based on. The KBES also trims the created surfaces, thus facilitating the subsequent meshing.

The KBES has been developed in CATIA V5 (Dassault systemes). It contains rules defined in CATIA knowledgeware which trigger sequential routines written in VBA (Visual Basic for Applications). An industrial application example where the system is used to automatically create a surface idealization for a die-cast part is also presented.

Place, publisher, year, edition, pages
2005. p. 101-
National Category
Engineering and Technology Reliability and Maintenance
Identifiers
URN: urn:nbn:se:hj:diva-1724ISBN: 1-874 376 034 (print)OAI: oai:DiVA.org:hj-1724DiVA, id: diva2:32544
Available from: 2007-08-03 Created: 2007-08-03
In thesis
1. CAD-Model Parsing for Automated Design and Design Evaluation
Open this publication in new window or tab >>CAD-Model Parsing for Automated Design and Design Evaluation
2008 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Product development has both innovative and analytic sides. Starting from the requirements, a design suggestion is generated. In order to assess how well the envisioned design fulfils the requirements, it is sometimes necessary to build a computer model of it for the analysis. The overall motivation of the work presented is to reduce the time spent on creating the model by reusing knowledge gained from developing similar products by suggesting, building and evaluating IT-systems. To verify the systems real design examples, obtained from companies that have participated in the research projects have been used.

The work is based on two major application examples. The first, involving the automated geometrical idealisation of die-cast parts (Paper I-III), and the second involving manufacturability of powder metallurgy pressed and sintered parts (Paper IV-VI). The work starts from the point in the product development process where it exists a design suggestion represented as an arbitrary format CAD-model. In the powder metallurgy case the object is to secure that the geometry is suitable for the production process. In the die-casting case the object is to automatically create an idealised version of the model for shell elements meshing. These two tasks have previously been treated as two separate cases, addressed by completely different software. This thesis suggests a common method for addressing the two cases. The method is based on converting the CAD-models, using the geometrical restrictions of the production processes, into a format with a specialised feature structure, parameterisation and construction history using a feature recognition approach. The features are then automatically reconstructed in a target CAD-system. The resulting, specialised CAD-model can be used for automated design and design evaluation purposes, demonstrated in the thesis. The models are therefore called DAR (Design Automation Ready)-models. The DAR-models are useful in that they separate the conversion from the subsequent treatment of the models providing modularisation, flexibility and user insight in the model structure. In that a construction history and parameterisation have be constructed in the target CAD-system, the advanced geometry manipulation and means for knowledge management often provided in modern CAD-systems can be accessed in a transparent and user manageable way. This extends the usefulness of the CAD-systems from involving only interactive work to managing all components sharing the same production process.

Place, publisher, year, edition, pages
Göteborg: Chalmers Reproservice, 2008. p. 162
Series
Doktorsavhandlingar vid Chalmers Tekniska Högskola, ISSN 0346-718X ; 2856
Keywords
Design automation, CAD, KBE, Feature based modelling, Feature recognition, Product development.
National Category
Production Engineering, Human Work Science and Ergonomics
Identifiers
urn:nbn:se:hj:diva-10700 (URN)978-91-7385-175-6 (ISBN)
Public defence
2008-12-11, E1405, Tekniska Högskolan i Jönköping, Gjuterigatan 6, 551 11 Jönköping, Jönköping, 10:00 (English)
Opponent
Supervisors
Note
Teknologie DoktorsexamenAvailable from: 2009-11-03 Created: 2009-10-21 Last updated: 2009-11-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Stolt, RolandSunnersjö, Staffan

Search in DiVA

By author/editor
Stolt, RolandSunnersjö, Staffan
By organisation
JTH, Mechanical EngineeringJTH. Research area Computer Supported Engineering Design
Engineering and TechnologyReliability and Maintenance

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 412 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf