We experimentally investigated optical, electrical, and microstructural properties of heterointerfaces between two thin-film perovskite insulating materials, SrTiO3 (STO) and LaAlO3 (LAO), deposited at different oxygen pressure conditions. Cathode and photoluminescence experiments show that oxygen vacancies are formed in the bulk STO substrate during the growth of LAO films, resulting in high electrical conductivity and mobility values. In both high and low oxygen pressure interfaces, the electrical Hall mobilities follow a similar power-law dependence as observed in oxygen reduced STO bulk samples. The results are confirmed on a microscopic level by local strain fields at the interface reaching 10 nm into the STO substrate.