Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Relationships between macrostructure and microstructure in lamellar graphite iron castings
Jönköping University, School of Engineering, JTH, Materials and Manufacturing.ORCID iD: 0000-0001-6938-037X
Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
2024 (English)In: International Journal of metalcasting, ISSN 1939-5981, E-ISSN 2163-3193Article in journal (Refereed) Epub ahead of print
Abstract [en]

Spherical sheet steel molds filled with gray iron melts of varying chemical compositions and metallurgical conditions were air-cooled until solid, followed directly by austempering to preserve the austenite grain structure. The castings were studied using a combination of cooling curves and quantitative metallography, in order to clarify control of the austenite grain structure and its impact on the local microstructure. A novel method utilizing fast Fourier transform provided visual overview of macroscopic trends in the scale of the flake graphite structure. Castings inoculated with Sr-containing ferrosilicon featured finer eutectic cell structure but coarser equiaxed structure of austenite, emphasizing that melt treatments applied to control the graphite structure may have unintended effects on the austenite grain structure. In most non-inoculated castings, the microstructure was banded, with alternating layers of coarse and fine flake graphite with distance from the casting surface. The extent of the columnar zone of austenite grains showed no correlation with the graphite structure nor the volume fraction of dendrites. The volume-to-surface ratio of dendrites was more uniform in the columnar zone, but increased toward the center in the equiaxed zone. The casting with the highest carbon equivalent (4.34), featured zones containing finer dendrites and graphite. These zones appear to be gaps in the early solidification structure which filled later by secondary dendritic growth from surrounding austenite. This highlights that high carbon equivalent may lead to poor dendrite coherency which can make the microstructure less uniform and less predictable.

Place, publisher, year, edition, pages
Springer, 2024.
Keywords [en]
cast iron, component casting, microstructure, grain structure, discrete Fourier transform
National Category
Metallurgy and Metallic Materials
Identifiers
URN: urn:nbn:se:hj:diva-64053DOI: 10.1007/s40962-024-01319-3ISI: 001206074100005Scopus ID: 2-s2.0-85191073128Local ID: HOA;;64053OAI: oai:DiVA.org:hj-64053DiVA, id: diva2:1854624
Projects
LeanCast (20180033)Innovative Foundry Technology (20210082)
Funder
Knowledge Foundation, 20210082, 20180033Available from: 2024-04-26 Created: 2024-04-26 Last updated: 2024-05-06

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Domeij, BjörnDiószegi, Attila

Search in DiVA

By author/editor
Domeij, BjörnDiószegi, Attila
By organisation
JTH, Materials and Manufacturing
In the same journal
International Journal of metalcasting
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 49 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf