Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A restricted gamma ridge regression estimator combining the gamma ridge regression and the restricted maximum likelihood methods of estimation
Jönköping University, Jönköping International Business School, JIBS, Economics, Finance and Statistics. Jonkoping Univ, Jonkoping Int Business Sch, Dept Econ Finance & Stat, Jonkoping, Sweden..ORCID iD: 0000-0003-0279-5305
Univ Sargodha, Dept Stat, Sargodha, Pakistan..
Univ Sargodha, Dept Stat, Sargodha, Pakistan..
Jönköping University, Jönköping International Business School, JIBS, Statistics. Jönköping University, Jönköping International Business School, JIBS, Centre for Entrepreneurship and Spatial Economics (CEnSE).ORCID iD: 0000-0002-4535-3630
2022 (English)In: Journal of Statistical Computation and Simulation, ISSN 0094-9655, E-ISSN 1563-5163, Vol. 92, no 8, p. 1696-1713Article in journal (Refereed) Published
Abstract [en]

In this article, we propose a restricted gamma ridge regression estimator (RGRRE) by combining the gamma ridge regression (GRR) and restricted maximum likelihood estimator (RMLE) to combat multicollinearity problem for estimating the parameter beta in the gamma regression model. The properties of the new estimator are discussed, and its superiority over the GRR, RMLE and traditional maximum likelihood estimator is theoretically analysed under different conditions. We also suggest some estimating methods to find the optimal value of the shrinkage parameter. A Monte Carlo simulation study is conducted to judge the performance of the proposed estimator. Finally, an empirical application is analysed to show the benefit of RGRRE over the existing estimators.

Place, publisher, year, edition, pages
Taylor & Francis, 2022. Vol. 92, no 8, p. 1696-1713
Keywords [en]
Gamma regression model, maximum likelihood estimator, multicollinearity, mean squared error, restricted gamma ridge regression estimator
National Category
Probability Theory and Statistics
Identifiers
URN: urn:nbn:se:hj:diva-55264DOI: 10.1080/00949655.2021.2005063ISI: 000723102000001Scopus ID: 2-s2.0-85120084796Local ID: HOA;intsam;781634OAI: oai:DiVA.org:hj-55264DiVA, id: diva2:1617185
Available from: 2021-12-06 Created: 2021-12-06 Last updated: 2023-02-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Qasim, MuhammadMånsson, Kristofer

Search in DiVA

By author/editor
Qasim, MuhammadMånsson, Kristofer
By organisation
JIBS, Economics, Finance and StatisticsJIBS, StatisticsJIBS, Centre for Entrepreneurship and Spatial Economics (CEnSE)
In the same journal
Journal of Statistical Computation and Simulation
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 162 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf