Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Estimation of the farm-level yield-weather-relation using machine learning
Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät, Thaer-Institut für Agrar- & Gartenbauwissenschaften, Department für Agrarökonomie, Berlin.
Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät, Thaer-Institut für Agrar- & Gartenbauwissenschaften, Department für Agrarökonomie, Berlin.
Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät, Thaer-Institut für Agrar- & Gartenbauwissenschaften, Department für Agrarökonomie, Berlin.
Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät, Thaer-Institut für Agrar- & Gartenbauwissenschaften, Department für Agrarökonomie, Berlin.ORCID iD: 0000-0003-2543-3673
2021 (English)Conference paper, Published paper (Refereed)
Abstract [en]

Weather is a pivotal factor for crop production as it is highly volatile and can hardly be controlled by farm management practices. Since there is a tendency towards increased weather extremes in the future, understanding the weather-related yield factors becomes increasingly important not only for yield prediction, but also for the design of insurance products that mitigate financial losses for farmers. In this study, an artificial neural network is set up and calibrated to a rich set of farm-level wheat yield data in Germany covering the period from 2003 to 2018. A nonlinear regression model, which uses rainfall, temperature, and soil moisture as explanatory variables for yield deviations, serves as a benchmark. The empirical application reveals that the gain in estimation precision by using machine learning techniques compared with traditional estimation approaches is quite substantial and that the use of regionalized models and high-resolution weather data improve the performance of ANN.

Place, publisher, year, edition, pages
2021.
Keywords [en]
Yield Prediction, Machine Learning, Weather Risk, Risk Management, Index Insurance
National Category
Economics
Identifiers
URN: urn:nbn:se:hj:diva-55170OAI: oai:DiVA.org:hj-55170DiVA, id: diva2:1614836
Conference
GEWISOLA2021, Annual Conference of the German Society of Economic and Social Sciences in Agriculture, September 22-24, 2021 online, Humboldt-Universität zu Berlin Faculty of Life Sciences, Department of Agricultural Economics
Available from: 2021-11-27 Created: 2021-11-27 Last updated: 2022-10-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Ritter, Matthias

Search in DiVA

By author/editor
Ritter, Matthias
Economics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 78 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf