Neighborhood effects in wind farm performance: A regression approach
2017 (English)In: Energies, E-ISSN 1996-1073, Vol. 10, no 3, article id 365
Article in journal (Refereed) Published
Abstract [en]
The optimization of turbine density in wind farms entails a trade-off between the usage of scarce, expensive land and power losses through turbine wake effects. A quantification and prediction of the wake effect, however, is challenging because of the complex aerodynamic nature of the interdependencies of turbines. In this paper, we propose a parsimonious data driven regression wake model that can be used to predict production losses of existing and potential wind farms. Motivated by simple engineering wake models, the predicting variables are wind speed, the turbine alignment angle, and distance. By utilizing data from two wind farms in Germany, we show that our models can compete with the standard Jensen model in predicting wake effect losses. A scenario analysis reveals that a distance between turbines can be reduced by up to three times the rotor size, without entailing substantial production losses. In contrast, an unfavorable configuration of turbines with respect to the main wind direction can result in production losses that are much higher than in an optimal case.
Place, publisher, year, edition, pages
MDPI, 2017. Vol. 10, no 3, article id 365
Keywords [en]
Wake modeling, Wind energy, Wind farm design, Aerodynamics, Economic and social effects, Electric utilities, Forecasting, Turbines, Wakes, Wind, Alignment angle, Jensen models, Power-losses, Production loss, Scenario analysis, Wake model, Wind directions, Wind farm, Wind power
National Category
Economics Energy Engineering
Identifiers
URN: urn:nbn:se:hj:diva-54522DOI: 10.3390/en10030365ISI: 000398736700105Scopus ID: 2-s2.0-85035053970OAI: oai:DiVA.org:hj-54522DiVA, id: diva2:1614405
2021-11-252021-11-252023-08-28Bibliographically approved