System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Electrodeposition of photocatalytic sn-ni matrix composite coatings embedded with doped TiO2 particles
Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, 9, Heroon Polytechniou Str., Zografos Campus, Athens, 15780, Greece.
Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, 9, Heroon Polytechniou Str., Zografos Campus, Athens, 15780, Greece.
Jönköping University, School of Engineering, JTH, Materials and Manufacturing.ORCID iD: 0000-0003-2924-137X
Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, 9, Heroon Polytechniou Str., Zografos Campus, Athens, 15780, Greece.
Show others and affiliations
2020 (English)In: Coatings, ISSN 2079-6412, Vol. 10, no 8, article id 775Article in journal (Refereed) Published
Abstract [en]

Direct current electrodeposited Sn-Ni/TiO2 nanostructured coatings were produced by embedding two different doped types of TiO2 particles within the alloy matrix, a commercially available doped carbon-based and doped N, S-TiO2 particles. The structural characteristics of the composite coatings have been correlated with the effect of loading, type of particles in the electrolytic bath, and the applied current density. Regardless of the type of doped particles TiO2, increasing values of applied current density resulted in a reduction of the co-deposition percentage of TiO2 particles and an increase of Tin content into the alloy matrix. The application of low current density values accompanied by a high load of particles in the bath led to the highest codeposition percentage (~3.25 wt. %) achieved in the case of embedding N, S-TiO2 particles. X-ray diffraction data demonstrated that in composite coatings the incorporation of the different types of TiO2 particles in the alloy metal matrix modified significantly the nano-crystalline structure in comparison with the pure coatings. The best photocatalytic behavior under visible irradiation was revealed for the composite coatings with the highest co-deposition percentage of doped N, S-TiO2 particles, that also exhibited enhanced wear resistance and slightly reduced microhardness compared to pure ones.

Place, publisher, year, edition, pages
MDPI, 2020. Vol. 10, no 8, article id 775
Keywords [en]
Direct current, Doped TiO2 particles, Micro-hardness, Photocatalytic performance, Sn-Ni alloy, Wear resistance
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:hj:diva-50611DOI: 10.3390/COATINGS10080775ISI: 000565680000001Scopus ID: 2-s2.0-85090082506Local ID: GOA JTH 2020;JTHMaterialISOAI: oai:DiVA.org:hj-50611DiVA, id: diva2:1466874
Funder
EU, FP7, Seventh Framework Programme, 314988Available from: 2020-09-14 Created: 2020-09-14 Last updated: 2020-09-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Zanella, CaterinaLeisner, Peter

Search in DiVA

By author/editor
Zanella, CaterinaLeisner, Peter
By organisation
JTH, Materials and Manufacturing
In the same journal
Coatings
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 79 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf