Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Criteria considered in a manufacturing reshoring decision: a multiple case study
Jönköping University, School of Engineering, JTH, Industrial Product Development, Production and Design.ORCID iD: 0000-0002-1318-1598
Jönköping University, School of Engineering, JTH, Industrial Product Development, Production and Design. Jönköping University, School of Engineering, JTH, Supply Chain and Operations Management.ORCID iD: 0000-0002-8305-4412
Jönköping University, School of Engineering, JTH, Supply Chain and Operations Management.ORCID iD: 0000-0002-1627-8459
2020 (English)In: SPS2020: Proceedings of the Swedish Production Symposium, October 7–8, 2020 / [ed] K. Säfsten & F. Elgh, Amsterdam: IOS Press, 2020, Vol. 13, p. 610-621Conference paper, Published paper (Refereed)
Abstract [en]

The manufacturing reshoring phenomenon has received more attention in the academic and business literature in recent years. Due to the newness of the phenomenon, there is a lack of knowledge about how these decisions were made. This research provides a theoretical framework by reviewing literature on possible criteria that are considered in a manufacturing reshoring decision. The criteria are categorized into six categories including competitive priority, resource, strategy, context, preference and global condition. A multiple case study methodology is used to identify the criteria and compare them with the theoretical framework. The findings indicate that total cost is the most common criteria considered and each case company has followed its own cost analysis techniques. Other criteria considered by all case companies were inventory cost, transportation cost, switching cost, delivery lead times, proximity to customer and availability of manufacturing technology. The research concludes that manufacturing reshoring is a holistic decision with criteria occurring at all categories in the theoretical framework. This contributes to the knowledge of reshoring decision-making and suggests that future research should investigate decision support tools for such decisions.

Place, publisher, year, edition, pages
Amsterdam: IOS Press, 2020. Vol. 13, p. 610-621
Series
Advances in Transdisciplinary Engineering, ISSN 2352-751X, E-ISSN 2352-7528 ; 13
Keywords [en]
Reshoring, manufacturing location decision, decision criteria, case study
National Category
Production Engineering, Human Work Science and Ergonomics
Identifiers
URN: urn:nbn:se:hj:diva-48259DOI: 10.3233/ATDE200200Scopus ID: 2-s2.0-85098619617ISBN: 978-1-64368-146-7 (print)ISBN: 978-1-64368-147-4 (electronic)OAI: oai:DiVA.org:hj-48259DiVA, id: diva2:1428185
Conference
9th Swedish Production Symposium (SPS), 7-8 October 2020, Jönköping, Sweden
Note

The symposium was held online on 7 & 8 October 2020 because of restrictions due to the Corona virus pandemic. Included in thesis in manuscript form with the title "Criteria considered in a reshoring decision: a multiple case study".

Available from: 2020-05-05 Created: 2020-05-05 Last updated: 2023-02-27Bibliographically approved
In thesis
1. Developing decision-support tools for evaluation of manufacturing reshoring decisions
Open this publication in new window or tab >>Developing decision-support tools for evaluation of manufacturing reshoring decisions
2020 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

During last three decades, companies have offshored their manufacturing activities across international borders in order to pursue lower manufacturing costs. Despite having accomplished their purpose, companies have also suffered from issues, especially poor quality of products and a poor response to customer demand. Therefore, companies consider relocating some of the manufacturing activities back to the home country, a process that is known as manufacturing reshoring. There is paucity of scholarly attention on how manufacturing reshoring decisions are evaluated and supported. Therefore, the purpose of this thesis is to develop decision-support tools to evaluate manufacturing reshoring decisions. In order to fulfil this, it is important to know how industry experts reason while making manufacturing reshoring decisions (RQ1), and how their reasoning can be modeled into decision-support tools (RQ2). Therefore, three studies were conducted including a multiple case study and two modeling studies. The multiple case study addressed the criteria that are considered by the industry experts in these decisions, while the two modeling studies, based on fuzzy logic and analytical hierarchy process (AHP), used a part of these criteria to develop decision-support tools. The findings indicate that a holistic set of criteria were considered by industry experts in arriving at a manufacturing reshoring decision. A large portion of these criteria occur within competitive priority category and among them, high importance is given to quality, while low importance to sustainability. Fuzzy logic modeling was used to model the criteria from the perspective of competitive priority at an overall level. Three fuzzy logic concepts were developed to capture industry experts’ reasoning and facilitate modeling of manufacturing reshoring decisions. Furthermore, two configurations and sixteen settings were developed, of which, the best ones were identified. AHP-based tools were used to capture experts’ reasoning of the competitive priority criteria by comparing the criteria. It was observed that fuzzy logic-based tools are able to better emulate industry experts’ reasoning of manufacturing reshoring. This research contributes to theory with a holistic framework of reshoring decision criteria, and to practice with decision-support tools for evaluation of manufacturing reshoring decisions.

Abstract [sv]

Under de tre senaste decennierna har många företag flyttat sin produktion till lågkostnadsländer för att kunna utnyttja lägre lönekostnader. Många gånger har företagen genom denna åtgärd lyckats sänka sin tillverkningskostnad men samtidigt drabbats av oförutsedda problem kopplat till exempelvis produkt-kvalitet och möjligheten att kundanpassa produkter. Hanteringen av problemen har lett till ytterligare kostnader som många gånger överstigit besparingen i tillverkningskostnad. Detta har lett till att allt fler företag börjat flytta tillbaka sin produktion till hemlandet, så kallad reshoring. Reshoring är ett ungt område där det saknas forskning gällande bland annat hur den här typen av beslut på bästa sätt kan utvärderas och vilken typ av beslutstöd som kan underlätta den här typen av beslut. Därför är syftet med den här avhandlingen är att utveckla beslutsstödverktyg för utvärdering av reshoring beslut. För att uppfylla syftet har två forskningsfrågor formulerats. Den första frågan handlar om hur industriexperter resonerar kring reshoring beslut (RQ1) medan den andra frågan handlar om hur deras resonemang kan modelleras i beslutsstödverktyg (RQ2). Tre studier har genomförts för att besvara forskningsfrågorna, en fallstudie och två modelleringsstudier. Fallstudien fokuserar på att identifiera vilka kriterier som industriexperter beaktar medan modelleringsstudierna fokuserar på att utveckla beslutstödsverktyg där en del av dessa kriterier beaktas, med hjälp av fuzzy logic och analytical hierarchy process (AHP). Resultaten från forskningen visar att industriexperter bedömer reshoring beslut utifrån ett holistiskt perspektiv. En stor del av dessa beslutskriterier finns inom konkurrenskraft kategorin och inom dessa, har industriexperterna lagt högst vikt på kvalitet och lägst vikt på hållbarhet. Genom fuzzy logic modellering modellerades kriterierna på en övergripande nivå. Tre nya fuzzy logic koncept utvecklades för att fånga experternas resonemang. Dessutom utvecklades två konfigurationer med sexton olika inställningar, och de bästa identifierades. AHP-baserade verktyg utvecklades för att fånga experternas resonemang om kriterierna för konkurrenskraft prioriteringar. Fuzzy logic-baserade verktyg kan bättre fånga experternas resonemang kring reshoring beslut. Denna forskning bidrar till teori med en holistisk lista över beslutskriterier för reshoring beslut, och till praktik med beslutsstöd verktyg för utvärdering av reshoring beslut.

Place, publisher, year, edition, pages
Jönköping: Jönköping University, School of Engineering, 2020. p. 69
Series
JTH Dissertation Series ; 054
Keywords
Manufacturing reshoring, decision-making, support tools, fuzzy logic, AHP, Produktion, reshoring, beslutsstödverktyg, fuzzy logik, AHP
National Category
Production Engineering, Human Work Science and Ergonomics
Identifiers
urn:nbn:se:hj:diva-48263 (URN)978-91-87289-57-6 (ISBN)
Presentation
2020-05-26, da Vinci (jE4106) / via Zoom, Jönköping University, School of Engineering, Jönköping, 10:00 (English)
Opponent
Supervisors
Available from: 2020-05-05 Created: 2020-05-05 Last updated: 2020-05-05Bibliographically approved
2. Decision support for multi-criteria evaluation of manufacturing reshoring decisions
Open this publication in new window or tab >>Decision support for multi-criteria evaluation of manufacturing reshoring decisions
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Reshoring decisions in the manufacturing sector have received increasing attention due to their potential to improve overall quality, flexibility, or reduce risk. Contemporary events such as the pandemic and the supply crisis have made manufacturing reshoring decisions a timely and important topic to study. Particularly, the decision support deserves attention as there is limited knowledge on tools for reshoring decisions. The purpose of this study is to investigate the feasibility of decision support for reshoring decisions. The purpose is addressed through three research questions (RQ). The first question (RQ1) is “What criteria should be considered in evaluating a manufacturing reshoring decision?” and should guide companies in identifying factors in a reshoring decision. The second one (RQ2) is “How do decision-makers reason with respect to criteria in manufacturing reshoring decisions?” and describes the importance of the identified criteria that come into play during the decision. The third one (RQ3) is “How can the criteria be modeled in decision-support tools for evaluating manufacturing reshoring decisions?” and explores the feasibility of decision support. The research methods involve systematic literature review, multiple case study, modeling, and archival research. The findings show that reshoring is a multi-criteria decision with cost, quality, and delivery time criteria are considered to be more important (high weight) than sustainability criteria (low weight). The reasoning is manifested by inference rules pertaining to the important criteria. Multi-criteria decision-making techniques such as fuzzy inference, AHP, fuzzy-AHP and fuzzy-TOPSIS are feasible for evaluating manufacturing reshoring decisions. While these techniques rely on decision-makers’ ability to specify weights and rules, rule mining is used to extract rules from large datasets. This research contributes through increased knowledge regarding the criteria, reasoning, and modeling of reshoring decisions. Furthermore, the research extrapolates on the theories that are required to move forward when investigating this topic. For practitioners, this research develops tools that can be used in different stages of the decision-making process. For society, the support tools mean making rational decisions on reshoring rather than emotional or politically motivated ones.

Abstract [sv]

Återflyttning av produktion har väckt mycket intresse. Fördelarna med att flytta hem produktion inkluderar ökad kvalitet, flexibilitet, marknadsföring och minskade risker. Dessutom har pandemin avslöjat riskerna med långa leveranskedjor, så det är lämpligt att studera möjligheterna med återflyttning. Det finns behov av mer kunskap om verktyg som kan hjälpa beslutsfattare att ta beslut om att flytta hem produktionen. Syftet med denna studie är att undersöka beslutsstöd för återflyttning av produktionen. Tre forskningsfrågor har formulerats enligt syftet. Den första frågan är “Vilka kriterier bör beslutsfattare överväga vid beslut om återflyttning av produktion?” Svaret för frågan kommer att vägleda beslutsfattaren och företag i med att identifiera kriterier. Den andra frågan är “Hur resonerar beslutsfattare i samband med kriterier vid beslut om återflyttning av produktion?” och den beskriver vikter för de identifierade kriterierna och reglerna som kommer in under beslutet. Den tredje frågan är “Hur kan kriterierna modelleras i ett verktyg för att utvärdera beslut om återflyttning av produktion?” Frågan undersöker olika beslutsmodeller. Studien använder sig av en blandning av metoder, inklusive litteraturstudier, fallstudier, modellering och arkivstudier. De kriterier som beaktas vid beslutet är kostnad, kvalitet och leveranstid, som betraktas som mycket viktiga, medan hållbarhetskriterier inte har samma vikt. Kriterierna är dock dynamiska och kan ändras över tiden. Beslutsreglerna tar hänsyn till de viktiga kriterierna. Fuzzy logic är en möjlig beslutsmodell som kan användas vid beslut om återflyttning. Forskningen bidrar till en ökad förståelse för kriterier, beslutsfattarens resonemang och modellering av återflyttningsbeslut. Dessutom reflekterar forskningen över de teorier som krävs för att gå vidare när man undersöker detta ämne. För praktiker och företag innebär det att utveckla verktyg som kan användas under olika steg i beslutsprocessen. För samhället innebär det att besluten hålls rationella och att undvika emotionella eller politiskt motiverade beslut. Avhandlingen är baserad på sex vetenskapliga artiklar.

Place, publisher, year, edition, pages
Jönköping: Jönköping University, School of Engineering, 2023. p. 80
Series
JTH Dissertation Series ; 076
Keywords
Reshoring decision, decision support, manufacturing, criteria, reasoning, multi-criteria decision-making, Återflyttningsbeslut, beslutsstöd, produktion, kriterier, resonemang, beslutsfattande
National Category
Production Engineering, Human Work Science and Ergonomics
Identifiers
urn:nbn:se:hj:diva-59923 (URN)978-91-87289-84-2 (ISBN)978-91-87289-85-9 (ISBN)
Public defence
2023-03-24, Gjuterisalen (E1405), School of Engineering, Jönköping, 10:00 (English)
Opponent
Supervisors
Available from: 2023-02-27 Created: 2023-02-27 Last updated: 2023-02-27Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Sequeira, MovinHilletofth, PerEriksson, David

Search in DiVA

By author/editor
Sequeira, MovinHilletofth, PerEriksson, David
By organisation
JTH, Industrial Product Development, Production and DesignJTH, Supply Chain and Operations Management
Production Engineering, Human Work Science and Ergonomics

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 319 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf