Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Explainable AI for maritime anomaly detection and autonomous driving
Jönköping University, School of Engineering, JTH, Department of Computer Science and Informatics. University of Skövde.ORCID iD: 0000-0003-2900-9335
2020 (English)In: Dagstuhl Reports, E-ISSN 2192-5283, Vol. 9, no 11, p. 29-30Article in journal, Meeting abstract (Refereed) Published
Place, publisher, year, edition, pages
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik , 2020. Vol. 9, no 11, p. 29-30
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:hj:diva-48046OAI: oai:DiVA.org:hj-48046DiVA, id: diva2:1421006
Conference
Dagstuhl Seminar 19452 "Machine Learning Meets Visualization to Make Artificial Intelligence Interpretable", November 3-8, 2019
Available from: 2020-04-01 Created: 2020-04-01 Last updated: 2024-07-16Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Abstract

Authority records

Riveiro, Maria

Search in DiVA

By author/editor
Riveiro, Maria
By organisation
JTH, Department of Computer Science and Informatics
In the same journal
Dagstuhl Reports
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 544 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf