Longitudinal trajectories, correlations and mortality associations of nine biological ages across 20-years follow-up.Show others and affiliations
2020 (English)In: eLIFE, E-ISSN 2050-084X, Vol. 9, article id e51507Article in journal (Refereed) Published
Abstract [en]
Biological age measurements (BAs) assess aging-related physiological change and predict health risks among individuals of the same chronological age (CA). Multiple BAs have been proposed and are well studied individually but not jointly. We included 845 individuals and 3973 repeated measurements from a Swedish population-based cohort and examined longitudinal trajectories, correlations, and mortality associations of nine BAs across 20 years follow-up. We found the longitudinal growth of functional BAs accelerated around age 70; average levels of BA curves differed by sex across the age span (50-90 years). All BAs were correlated to varying degrees; correlations were mostly explained by CA. Individually, all BAs except for telomere length were associated with mortality risk independently of CA. The largest effects were seen for methylation age estimators (GrimAge) and the frailty index (FI). In joint models, two methylation age estimators (Horvath and GrimAge) and FI remained predictive, suggesting they are complementary in predicting mortality.
Place, publisher, year, edition, pages
eLife Sciences Publications , 2020. Vol. 9, article id e51507
Keywords [en]
aging, biological age, correlation, epidemiology, global health, human, longitudinal trajectory, mortality
National Category
Gerontology, specialising in Medical and Health Sciences
Identifiers
URN: urn:nbn:se:hj:diva-47990DOI: 10.7554/eLife.51507ISI: 000514103700001PubMedID: 32041686Scopus ID: 2-s2.0-85079222300Local ID: GOA HHJ 2020;HHJARNISOAI: oai:DiVA.org:hj-47990DiVA, id: diva2:1415456
2020-03-182020-03-182020-03-18Bibliographically approved