Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Interactive visualization of large-scale gene expression data
Högskolan i Skövde, Institutionen för informationsteknologi.ORCID iD: 0000-0003-2900-9335
Högskolan i Skövde, Institutionen för informationsteknologi.ORCID iD: 0000-0001-6310-346X
Takara Bio Europe, Gothenburg, Sweden.
Högskolan i Skövde, Institutionen för biovetenskap.
Show others and affiliations
2016 (English)In: Information Visualisation: Computer Graphics, Imaging and Visualisation / [ed] Ebad Banissi, Mark W. McK. Bannatyne, Fatma Bouali, Remo Burkhard, John Counsell, Urska Cvek, Martin J. Eppler, Georges Grinstein, Wei Dong Huang, Sebastian Kernbach, Chun-Cheng Lin, Feng Lin, Francis T. Marchese, Chi Man Pun, Muhammad Sarfraz, Marjan Trutschl, Anna Ursyn, Gilles Venturini, Theodor G. Wyeld, and Jian J. Zhang, IEEE Computer Society , 2016, p. 348-354Conference paper, Published paper (Refereed)
Abstract [en]

In this article, we present an interactive prototype that aids the interpretation of large-scale gene expression data, showing how visualization techniques can be applied to support knowledge extraction from large datasets. The developed prototype was evaluated on a dataset of human embryonic stem cell-derived cardiomyocytes. The visualization approach presented here supports the analyst in finding genes with high similarity or dissimilarity across different experimental groups. By using an external overview in combination with filter windows, and various color scales for showing the degree of similarity, our interactive visual prototype is able to intuitively guide the exploration processes over the large amount of gene expression data.

Place, publisher, year, edition, pages
IEEE Computer Society , 2016. p. 348-354
Series
Proceedings [IEEE], E-ISSN 2375-0138
Keywords [en]
decision-making, gene expression data, similarity, visual analytics
National Category
Computer Sciences
Research subject
Technology; Skövde Artificial Intelligence Lab (SAIL); Interaction Lab (ILAB); Bioinformatics
Identifiers
URN: urn:nbn:se:hj:diva-43253DOI: 10.1109/IV.2016.58ISI: 000389494200057Scopus ID: 2-s2.0-84989862491Local ID: 0;0;miljJAILISBN: 978-1-4673-8942-6 (electronic)ISBN: 978-1-4673-8943-3 (print)OAI: oai:DiVA.org:hj-43253DiVA, id: diva2:1293763
Conference
20th International Conference Information Visualisation, 19-22 July 2016, Lisbon, Portugal
Projects
NOVA and BISON
Funder
Knowledge Foundation, 20140294Available from: 2016-09-24 Created: 2019-03-05 Last updated: 2019-08-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Riveiro, MariaLebram, MikaelSartipy, PeterSynnergren, Jane

Search in DiVA

By author/editor
Riveiro, MariaLebram, MikaelSartipy, PeterSynnergren, Jane
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 48 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf