Visual Analytics has brought forward many solutions to different tasks such as exploring topics, understanding user and customer behavior, comparing genomes, or detecting anomalies. Many of these solutions, if not most, are standalone applications with technological contributions which cannot be easily taken for: reuse in other domains, further improvement, benchmarking, or integration and deployment alongside other solutions. The latter can prove specially helpful for exploratory data analysis. This often leads researchers to re-implement solutions and thus to a suboptimal use of skills and resources. This paper discusses further the lack of off-the-shelf libraries for Visual Analytics, and proposes the creation of pluggable libraries on top of existing technologies such as Spark and Zeppelin. We provide an illustrative example of a pluggable, Visual Analytics library using these technologies.