Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the primary solidification of compacted graphite iron: Microstructure evolution during isothermal coarsening
Jönköping University, School of Engineering, JTH, Materials and Manufacturing. Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing – Casting.ORCID iD: 0000-0002-6339-4292
Jönköping University, School of Engineering, JTH, Materials and Manufacturing. Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing – Casting.ORCID iD: 0000-0002-3024-9005
2018 (English)In: Materials Science Forum, ISSN 0255-5476, E-ISSN 1662-9752, Vol. 925, p. 90-97Article in journal (Refereed) Published
Abstract [en]

It is widely accepted that in most commercial hypoeutectic alloys, both static mechanicalproperties and feeding characteristics during solidification, are extremely linked to the coarseness ofthe primary phase. It is therefore of critical importance to provide tools to control and predict thecoarsening process of the dendritic phase present in hypoeutectic melts. The characterization of theprimary phase, a product of the primary solidification, has traditionally been neglected whencompared to the eutectic solidification characterization in cast iron investigations. This workpresents the morphological evolution of the primary austenite present in a hypoeutectic compactedgraphite cast iron (CGI) under isothermal conditions. To that purpose, a base spheroidal graphitecast iron (SGI) material with high Mg content is re-melted in a controlled atmosphere and reversedinto a CGI melt by controlling the Mg fading. An experimental isothermal profile is applied to thesolidification process of the experimental alloy to promote an isothermal coarsening process of theprimary austenite dendrite network during solid and liquid coexistence. Through interruptedsolidification experiments, the primary austenite is preserved and observed at room temperature. Byapplication of stereological relations, the primary phase and its isothermal coarsening process arecharacterized as a function of the coarsening time applied. The microstructural evolution observedin the primary austenite in CGI and the measured morphological parameters show a similar trend tothat observed for lamellar graphite cast iron (LGI) in previous investigations. The modulus of theprimary austenite, Mγ, and the nearest distance between the centre of gravity of neighbouringaustenite particles, Dγ, followed a linear relation with the cube root of coarsening time.

Place, publisher, year, edition, pages
Trans Tech Publications, 2018. Vol. 925, p. 90-97
Keywords [en]
Primary austenite, Microstructure evolution, Dendritic coarsening, Compacted Graphite Iron, CGI
National Category
Metallurgy and Metallic Materials
Identifiers
URN: urn:nbn:se:hj:diva-40548DOI: 10.4028/www.scientific.net/MSF.925.90ISI: XYZOAI: oai:DiVA.org:hj-40548DiVA, id: diva2:1220613
Available from: 2018-06-19 Created: 2018-06-19 Last updated: 2018-06-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Hernando, Juan CarlosDiószegi, Attila

Search in DiVA

By author/editor
Hernando, Juan CarlosDiószegi, Attila
By organisation
JTH, Materials and ManufacturingJTH. Research area Materials and manufacturing – Casting
In the same journal
Materials Science Forum
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 42 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf