System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Energy Efficiency Analysis of the Very Fast Decision Tree Algorithm
Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik.ORCID iD: 0000-0003-4973-9255
Jönköping University, School of Engineering, JTH, Computer Science and Informatics, JTH, Jönköping AI Lab (JAIL). Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik.ORCID iD: 0000-0002-0535-1761
Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik.
2017 (English)In: Trends in Social Network Analysis: Information Propagation, User Behavior Modeling, Forecasting, and Vulnerability Assessment / [ed] Rokia Missaoui, Talel Abdessalem, Matthieu Latapy, Cham, Switzerland: Springer, 2017, p. 229-252Chapter in book (Refereed)
Abstract [en]

Data mining algorithms are usually designed to optimize a trade-off between predictive accuracy and computational efficiency. This paper introduces energy consumption and energy efficiency as important factors to consider during data mining algorithm analysis and evaluation. We conducted an experiment to illustrate how energy consumption and accuracy are affected when varying the parameters of the Very Fast Decision Tree (VFDT) algorithm. These results are compared with a theoretical analysis on the algorithm, indicating that energy consumption is affected by the parameters design and that it can be reduced significantly while maintaining accuracy.

Place, publisher, year, edition, pages
Cham, Switzerland: Springer, 2017. p. 229-252
Series
Lectures Notes in Social Networks
Keywords [en]
Energy efficiency, Green computing, Very Fast Decision Tree, Big Data
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:hj:diva-37924DOI: 10.1007/978-3-319-53420-6_10ISBN: 978-3-319-53419-0 (print)ISBN: 978-3-319-53420-6 (electronic)OAI: oai:DiVA.org:hj-37924DiVA, id: diva2:1160024
Funder
Knowledge Foundation, 20140032]Available from: 2017-11-14 Created: 2017-11-24 Last updated: 2019-08-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Lavesson, Niklas

Search in DiVA

By author/editor
García Martín, EvaLavesson, Niklas
By organisation
JTH, Jönköping AI Lab (JAIL)
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 263 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf