Large-scale data centers account for a significant share of the energy consumption in many countries. Machine learning technology requires intensive workloads and thus drives requirements for lots of power and cooling capacity in data centers. It is time to explore green machine learning. The aim of this paper is to profile a machine learning algorithm with respect to its energy consumption and to determine the causes behind this consumption. The first scalable machine learning algorithm able to handle large volumes of streaming data is the Very Fast Decision Tree (VFDT), which outputs competitive results in comparison to algorithms that analyze data from static datasets. Our objectives are to: (i) establish a methodology that profiles the energy consumption of decision trees at the function level, (ii) apply this methodology in an experiment to obtain the energy consumption of the VFDT, (iii) conduct a fine-grained analysis of the functions that consume most of the energy, providing an understanding of that consumption, (iv) analyze how different parameter settings can significantly reduce the energy consumption. The results show that by addressing the most energy intensive part of the VFDT, the energy consumption can be reduced up to a 74.3%.