Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Energy Efficiency in Data Stream Mining
Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik.
Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik.ORCID iD: 0000-0002-0535-1761
Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik.
2015 (English)In: ASONAM '15: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining / [ed] Jian Pei,Fabrizio Silvestri & Jie Tang, ACM Digital Library, 2015, p. 1125-1132Conference paper, Published paper (Refereed)
Abstract [en]

Data mining algorithms are usually designed to optimize a trade-off between predictive accuracy and computational efficiency. This paper introduces energy consumption and energy efficiency as important factors to consider during data mining algorithm analysis and evaluation. We extended the CRISP (Cross Industry Standard Process for Data Mining) framework to include energy consumption analysis. Based on this framework, we conducted an experiment to illustrate how energy consumption and accuracy are affected when varying the parameters of the Very Fast Decision Tree (VFDT) algorithm. The results indicate that energy consumption can be reduced by up to 92.5% (557 J) while maintaining accuracy.

Place, publisher, year, edition, pages
ACM Digital Library, 2015. p. 1125-1132
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:hj:diva-37925DOI: 10.1145/2808797.2808863ISI: 000371793500173ISBN: 978-1-4503-3854-7 (print)OAI: oai:DiVA.org:hj-37925DiVA, id: diva2:1160021
Conference
Int’l Symp. on Foundations and Applications of Big Data Analytics (FAB 2015), Paris
Projects
BigData@BTH - Scalable resource-efficient systems for big data analytics
Funder
Knowledge FoundationAvailable from: 2016-01-14 Created: 2017-11-24 Last updated: 2018-09-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textFulltext

Authority records

Lavesson, Niklas

Search in DiVA

By author/editor
Lavesson, Niklas
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 56 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf