Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Consensus decision making in random forests
Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik.
Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik.ORCID iD: 0000-0002-0535-1761
Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik.ORCID iD: 0000-0002-9316-4842
2015 (English)In: Revised Selected Papers of the First International Workshop on Machine Learning, Optimization, and Big Data, 2015, p. 347-358Conference paper, Published paper (Refereed)
Abstract [en]

The applications of Random Forests, an ensemble learner, are investigated in different domains including malware classification. Random Forests uses the majority rule for the outcome, however, a decision from the majority rule faces different challenges such as the decision may not be representative or supported by all trees in Random Forests. To address such problems and increase accuracy in decisions, a consensus decision making (CDM) is suggested. The decision mechanism of Random Forests is replaced with the CDM. The updated Random Forests algorithm is evaluated mainly on malware data sets, and results are compared with unmodified Random Forests. The empirical results suggest that the proposed Random Forests, i.e., with CDM performs better than the original Random Forests.

Place, publisher, year, edition, pages
2015. p. 347-358
Series
Machine Learning, Optimization, and Big Data, ISSN 0302-9743 ; 9432
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:hj:diva-37969DOI: 10.1007/978-3-319-27926-8_31OAI: oai:DiVA.org:hj-37969DiVA, id: diva2:1159702
Conference
International Workshop on Machine learning, Optimization and big Data, Taormina, Sicily
Available from: 2016-08-25 Created: 2017-11-23 Last updated: 2018-01-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Lavesson, NiklasBoldt, Martin
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 5 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf