Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Accelerating difficulty estimation for conformal regression forests
Department of Computer and Systems Sciences, Stockholm University, Stockholm, Sweden.
Department of Information Technology, University of Borås, Borås, Sweden.
Department of Information Technology, University of Borås, Borås, Sweden.
Jönköping University, School of Engineering, JTH, Computer Science and Informatics. Jönköping University, School of Engineering, JTH. Research area Computer Science and Informatics.
2017 (English)In: Annals of Mathematics and Artificial Intelligence, ISSN 1012-2443, E-ISSN 1573-7470, 1-20 p.Article in journal (Refereed) Epub ahead of print
Abstract [en]

The conformal prediction framework allows for specifying the probability of making incorrect predictions by a user-provided confidence level. In addition to a learning algorithm, the framework requires a real-valued function, called nonconformity measure, to be specified. The nonconformity measure does not affect the error rate, but the resulting efficiency, i.e., the size of output prediction regions, may vary substantially. A recent large-scale empirical evaluation of conformal regression approaches showed that using random forests as the learning algorithm together with a nonconformity measure based on out-of-bag errors normalized using a nearest-neighbor-based difficulty estimate, resulted in state-of-the-art performance with respect to efficiency. However, the nearest-neighbor procedure incurs a significant computational cost. In this study, a more straightforward nonconformity measure is investigated, where the difficulty estimate employed for normalization is based on the variance of the predictions made by the trees in a forest. A large-scale empirical evaluation is presented, showing that both the nearest-neighbor-based and the variance-based measures significantly outperform a standard (non-normalized) nonconformity measure, while no significant difference in efficiency between the two normalized approaches is observed. The evaluation moreover shows that the computational cost of the variance-based measure is several orders of magnitude lower than when employing the nearest-neighbor-based nonconformity measure. The use of out-of-bag instances for calibration does, however, result in nonconformity scores that are distributed differently from those obtained from test instances, questioning the validity of the approach. An adjustment of the variance-based measure is presented, which is shown to be valid and also to have a significant positive effect on the efficiency. For conformal regression forests, the variance-based nonconformity measure is hence a computationally efficient and theoretically well-founded alternative to the nearest-neighbor procedure. 

Place, publisher, year, edition, pages
Springer, 2017. 1-20 p.
Keyword [en]
Conformal prediction, Nonconformity measures, Random forests, Regression
National Category
Probability Theory and Statistics
Identifiers
URN: urn:nbn:se:hj:diva-35193DOI: 10.1007/s10472-017-9539-9Scopus ID: 2-s2.0-85014124316OAI: oai:DiVA.org:hj-35193DiVA: diva2:1081270
Available from: 2017-03-13 Created: 2017-03-13 Last updated: 2017-03-13

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Johansson, Ulf
By organisation
JTH, Computer Science and InformaticsJTH. Research area Computer Science and Informatics
In the same journal
Annals of Mathematics and Artificial Intelligence
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 106 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf