Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Filling, Feeding and Defect Formation of Thick-Walled AlSi7Mg0.3 Semi-Solid Castings
Jönköping University, School of Engineering, JTH, Materials and Manufacturing.
Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing – Casting.ORCID iD: 0000-0002-0101-0062
Jönköping University, School of Engineering, JTH, Materials and Manufacturing. Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing – Casting.
2016 (English)In: Solid State Phenomena, ISSN 1012-0394, E-ISSN 1662-9779, Vol. 256, p. 222-227Article in journal (Refereed) Published
Abstract [en]

Aluminium semi-solid castings have gained increased attention due to their superior mechanical properties, lower porosity compared to conventional high pressure die cast material. These characteristics suggests that semi-solid casting should be suitable to produce thick-walled structural components, yet most successful applications of semisolid casting have been for thin-walled components. There is a lack of understanding on filling and feeding related defect formation for semi-solid castings with thick-walled cross-sections. In the current study an AlSi7Mg0.3 aluminium alloy was used to produce semi-solid castings with a wall thickness of 10mm using a Vertical High Pressure Die Casting machine. The RheoMetalTM process was used for slurry preparation. The primary solid α-Al fraction in the slurry was varied together with die temperature. The evaluation of the filling related events was made through interrupted shots, stopping the plunger at different positions. Microscopy of full castings and interrupted test samples were performed identifying the presence of surface segregation layer, shear bands, gas entrapment, shrinkage porosity as well as burst feeding.

Place, publisher, year, edition, pages
Trans Tech Publications, 2016. Vol. 256, p. 222-227
Keywords [en]
Aluminium Semisolid Casting, Burst Feeding, Feeding Mechanisms, Filling Mechanisms, Shear Bands, Solid Fraction, Thick-Walled Castings
National Category
Metallurgy and Metallic Materials
Identifiers
URN: urn:nbn:se:hj:diva-31908DOI: 10.4028/www.scientific.net/SSP.256.222Scopus ID: 2-s2.0-85010196800OAI: oai:DiVA.org:hj-31908DiVA, id: diva2:1019459
Conference
14th International Conference on Semi Solid Processing of Alloys and Composites, October 23rd‐27th, Salt Lake City, Utah, USA.
Available from: 2016-10-04 Created: 2016-10-04 Last updated: 2018-01-30Bibliographically approved
In thesis
1. Al-7Si-Mg semi-solid castings – microstructure and mechanical properties
Open this publication in new window or tab >>Al-7Si-Mg semi-solid castings – microstructure and mechanical properties
2018 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The vehicles industry is facing increasing demands for fuel efficiency and cost reduction due to environmental legislation, sustainability and customer demands. Therefore, there is a great need to develop and produce lightweight components by using materials and processes that offer higher specific strength and/or design optimization. Semi‐solid aluminium casting offers design freedom and castings with lower shrinkage and gas entrapment defects compared to high pressure die castings. The lack of understanding of microstructure and defect formation, and design data, for semi‐solid castings is a barrier for foundries and designers in the vehicles industry to use semi‐solid castings.

In this study, the effect of two grain refiners on slurry formation and surface segregation of semi‐solid Al‐7Si‐0.3Mg castings produced by the Rheometal™ process was evaluated. The influence of grain refinement on primary α‐Al grain size, shape factor and solid fraction was analysed in addition to the solute content of the surface segregation layer.

The influence of magnesium on the formation of intermetallic phases during solidification and the heat treatment response of Al‐7Si‐Mg semi‐solid castings was investigated. The magnesium content was varied from 0.3 to 0.6wt.% and the semi-solid castings were analysed in the T5 and T6 conditions. Energy dispersive spectroscopy was used to identify the intermetallic phases formed during solidification. Tensile testing was performed and the results were correlated to the magnesium and silicon concentration measured in the interior of the α‐Al globules formed during slurry preparation.

The results suggest that the addition of grain refiner decreases the solid fraction obtained in the Rheometal™ process. However, no significant effect was observed on the α‐Al grain size and shape factor.

A good correlation was obtained between the magnesium concentration in the interior of the α‐Al globules formed during slurry preparation and the offset yield strength for all alloys. The low magnesium solubility in α‐Al at temperatures in the solidification range of the Al‐7Si‐Mg alloys is suggested to be the reason for the low hardening response for the T5 heat treatment compared to the T6 condition.

Place, publisher, year, edition, pages
Jönköping: Jönköping University, School of Engineering, 2018. p. 43
Series
JTH Dissertation Series ; 036
Keywords
Rheometal™ process; semi‐solid casting; aluminium alloys; grain refinement; segregation; intermetallic phases; heat treatment; mechanical properties
National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:hj:diva-38693 (URN)978-91-87289-37-8 (ISBN)
Supervisors
Available from: 2018-01-30 Created: 2018-01-30 Last updated: 2018-01-30Bibliographically approved

Open Access in DiVA

Fulltext(5645 kB)9 downloads
File information
File name FULLTEXT01.pdfFile size 5645 kBChecksum SHA-512
ae8ad5ad083cf57b6c1c13ce97148ed66e8cfe70c48e642233474f7b8b026c3ef2b759b60ab63cb8c8eebe152cce777d6ab047a51817a5e8cc4b0e20825d2b7f
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records BETA

Santos, JorgeJarfors, Anders E.W.Dahle, Arne

Search in DiVA

By author/editor
Santos, JorgeJarfors, Anders E.W.Dahle, Arne
By organisation
JTH, Materials and ManufacturingJTH. Research area Materials and manufacturing – Casting
In the same journal
Solid State Phenomena
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar
Total: 9 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 207 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf