CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt150",{id:"formSmash:upper:j_idt150",widgetVar:"widget_formSmash_upper_j_idt150",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt151_j_idt153",{id:"formSmash:upper:j_idt151:j_idt153",widgetVar:"widget_formSmash_upper_j_idt151_j_idt153",target:"formSmash:upper:j_idt151:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Numerical conformal mappings for waveguidesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Växjö: Växjö University Press , 2009. , p. 120
##### Series

Acta Wexionesa, ISSN 1404-4307 ; 177
##### Keywords [en]

waveguides, building block method, numerical conformal mappings, Schwarz–Christoffel mapping, rounded corners method, approximate curve factors, outer polygon method, boundary curvature, zipper method, geodesic algorithm, acoustic wave scattering, electro-magnetic wave scattering
##### National Category

Computational Mathematics
##### Identifiers

URN: urn:nbn:se:hj:diva-10602ISBN: 978-91-7636-661-5 (print)OAI: oai:DiVA.org:hj-10602DiVA, id: diva2:263263
##### Public defence

2009-09-25, Weber, Växjö universitet, Växjö, 10:00 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt440",{id:"formSmash:j_idt440",widgetVar:"widget_formSmash_j_idt440",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt446",{id:"formSmash:j_idt446",widgetVar:"widget_formSmash_j_idt446",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt452",{id:"formSmash:j_idt452",widgetVar:"widget_formSmash_j_idt452",multiple:true}); Available from: 2009-12-22 Created: 2009-10-10 Last updated: 2009-12-22Bibliographically approved
##### List of papers

Acoustic or electro-magnetic scattering in a waveguide with varying direction and cross-section can be re-formulated as a two-dimensional scattering problem, provided that the variations take place in only one dimension at a time. By using the so-called Building Block Method, it is possible to construct the scattering properties of a combination of scatterers when the properties of each scatterer are known. Hence, variations in the waveguide geometry or in the boundary conditions can be treated one at a time.

Using the Building Block Method, the problem takes the form of the Helmholtz equation for stationary waves in a waveguide of infinite length and with smoothly varying geometry and boundary conditions. A conformal mapping is used to transform the problem into a corresponding problem in a straight horizontal waveguide, and by expanding the field in Fourier trigonometric series, the problem can be reformulated as an infinite-dimensional ordinary differential equation. From this, numerically solvable differential equations for the reflection and transmission operators are derived.

To be applicable in the Building Block Method, the numerical conformal mapping must be constructed such that the direction of the boundary curve can be controlled. At the channel ends, it is an indispensable requirement, that the two boundary curves are (at least) asymptotically parallel and straight. Furthermore, to achieve bounded operators in the differential equations, the boundary curves must satisfy different regularity conditions, depending on the boundary conditions.

In this work, several methods to accomplish such conformal mappings are presented. The Schwarz–Christoffel mapping, which is a natural starting point and for which also efficient numerical software exists, can be modified in different ways in order to achieve polygons with rounded corners. We present algorithms by which the parameters in the mappings can be determined after such modifications. We show also how the unmodified Schwarz–Christoffel mapping can be used for regions with a smooth boundary. This is done by constructing an appropriate outer polygon to the considered region.

Finally, we introduce one method that is not Schwarz–Christoffel-related, by showing how one of the so-called zipper algorithms can be used for waveguides.

1. Numerical Conformal Mappings for Waveguides$(function(){PrimeFaces.cw("OverlayPanel","overlay241705",{id:"formSmash:j_idt501:0:j_idt505",widgetVar:"overlay241705",target:"formSmash:j_idt501:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Electro-Magnetic Scattering in Variously Shaped Waveguides with an Impedance Condition$(function(){PrimeFaces.cw("OverlayPanel","overlay216642",{id:"formSmash:j_idt501:1:j_idt505",widgetVar:"overlay216642",target:"formSmash:j_idt501:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. A modiﬁed Schwarz-Christoffel mapping for regions with piecewise smooth boundaries$(function(){PrimeFaces.cw("OverlayPanel","overlay33516",{id:"formSmash:j_idt501:2:j_idt505",widgetVar:"overlay33516",target:"formSmash:j_idt501:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Modified Schwarz-Christoffel mappings using approximate curve factors$(function(){PrimeFaces.cw("OverlayPanel","overlay241714",{id:"formSmash:j_idt501:3:j_idt505",widgetVar:"overlay241714",target:"formSmash:j_idt501:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

5. Schwarz-Christoffel Mappings for Nonpolygonal Regions$(function(){PrimeFaces.cw("OverlayPanel","overlay113731",{id:"formSmash:j_idt501:4:j_idt505",widgetVar:"overlay113731",target:"formSmash:j_idt501:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

6. On the curvature of an inner curve in a Schwarz--Christoffel mapping$(function(){PrimeFaces.cw("OverlayPanel","overlay216633",{id:"formSmash:j_idt501:5:j_idt505",widgetVar:"overlay216633",target:"formSmash:j_idt501:5:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

7. Using a zipper algorithm to find a conformal map for a channel with smooth boundary$(function(){PrimeFaces.cw("OverlayPanel","overlay33495",{id:"formSmash:j_idt501:6:j_idt505",widgetVar:"overlay33495",target:"formSmash:j_idt501:6:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1162",{id:"formSmash:j_idt1162",widgetVar:"widget_formSmash_j_idt1162",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1215",{id:"formSmash:lower:j_idt1215",widgetVar:"widget_formSmash_lower_j_idt1215",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1216_j_idt1218",{id:"formSmash:lower:j_idt1216:j_idt1218",widgetVar:"widget_formSmash_lower_j_idt1216_j_idt1218",target:"formSmash:lower:j_idt1216:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});