Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Trustworthy explanations: Improved decision support through well-calibrated uncertainty quantification
Jönköping University, Jönköping International Business School, JIBS, Informatics.ORCID iD: 0000-0001-9633-0423
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The use of Artificial Intelligence (AI) has transformed fields like disease diagnosis and defence. Utilising sophisticated Machine Learning (ML) models, AI predicts future events based on historical data, introducing complexity that challenges understanding and decision-making. Previous research emphasizes users’ difficulty discerning when to trust predictions due to model complexity, underscoring addressing model complexity and providing transparent explanations as pivotal for facilitating high-quality decisions.

Many ML models offer probability estimates for predictions, commonly used in methods providing explanations to guide users on prediction confidence. However, these probabilities often do not accurately reflect the actual distribution in the data, leading to potential user misinterpretation of prediction trustworthiness. Additionally, most explanation methods fail to convey whether the model’s probability is linked to any uncertainty, further diminishing the reliability of the explanations.

Evaluating the quality of explanations for decision support is challenging, and although highlighted as essential in research, there are no benchmark criteria for comparative evaluations.

This thesis introduces an innovative explanation method that generates reliable explanations, incorporating uncertainty information supporting users in determining when to trust the model’s predictions. The thesis also outlines strategies for evaluating explanation quality and facilitating comparative evaluations. Through empirical evaluations and user studies, the thesis provides practical insights to support decision-making utilising complex ML models.

Abstract [sv]

Användningen av Artificiell intelligens (AI) har förändrat områden som diagnosticering av sjukdomar och försvar. Genom att använda sofistikerade maskininlärningsmodeller predicerar AI framtida händelser baserat på historisk data. Modellernas komplexitet resulterar samtidigt i utmanande beslutsprocesser när orsakerna till prediktionerna är svårbegripliga. Tidigare forskning pekar på användares problem att avgöra prediktioners tillförlitlighet på grund av modellkomplexitet och belyser vikten av att tillhandahålla transparenta förklaringar för att underlätta högkvalitativa beslut.

Många maskininlärningsmodeller erbjuder sannolikhetsuppskattningar för prediktionerna, vilket vanligtvis används i metoder som ger förklaringar för att vägleda användare om prediktionernas tillförlitlighet. Dessa sannolikheter återspeglar dock ofta inte de faktiska fördelningarna i datat, vilket kan leda till att användare felaktigt tolkar prediktioner som tillförlitliga. Därutöver förmedlar de flesta förklaringsmetoder inte om prediktionernas sannolikheter är kopplade till någon osäkerhet, vilket minskar tillförlitligheten hos förklaringarna.

Att utvärdera kvaliteten på förklaringar för beslutsstöd är utmanande, och även om det har betonats som avgörande i forskning finns det inga benchmark-kriterier för jämförande utvärderingar.

Denna avhandling introducerar en innovativ förklaringsmetod som genererar tillförlitliga förklaringar vilka inkluderar osäkerhetsinformation för att stödja användare att avgöra när man kan lita på modellens prediktioner. Avhandlingen ger också förslag på strategier för att utvärdera kvaliteten på förklaringar och underlätta jämförande utvärderingar. Genom empiriska utvärderingar och användarstudier ger avhandlingen praktiska insikter för att stödja beslutsfattande användande komplexa maskininlärningsmodeller.

Place, publisher, year, edition, pages
Jönköping: Jönköping University, Jönköping International Business School , 2023. , p. 72
Series
JIBS Dissertation Series, ISSN 1403-0470 ; 159
Keywords [en]
Explainable Artificial Intelligence, Interpretable Machine Learning, Decision Support Systems, Uncertainty Estimation, Explanation Methods
National Category
Information Systems, Social aspects Computer Sciences
Identifiers
URN: urn:nbn:se:hj:diva-62865ISBN: 978-91-7914-031-1 (print)ISBN: 978-91-7914-032-8 (electronic)OAI: oai:DiVA.org:hj-62865DiVA, id: diva2:1810440
Public defence
2023-12-12, B1014, Jönköping International Business School, Jönköping, 13:15 (English)
Opponent
Supervisors
Available from: 2023-11-08 Created: 2023-11-08 Last updated: 2023-11-08Bibliographically approved
List of papers
1. Interpretable instance-based text classification for social science research projects
Open this publication in new window or tab >>Interpretable instance-based text classification for social science research projects
2018 (English)In: Archives of Data Science, Series A, ISSN 2363-9881, Vol. 5, no 1Article in journal (Refereed) Published
Abstract [en]

In this study, two groups of respondents have evaluated explanations generated from an instance-based explanation method called WITE (Weighted Instance-based Text Explanations). One group consisted of 24 non-experts who answered a web survey about the words characterising the concepts of the classes and the other group consisted of three senior researchers and three respondents from a media house in Sweden who answered a questionnaire with open questions. The data used originates from one of the researchers’ project on media consumption in Sweden. The results from the non-experts indicate that WITE identified many words that corresponded to the human understanding but also included some insignificant or contrary words as important. In the results from the expert evaluation, there were indications that there is a risk that the explanations could persuade the users of the correctness of a prediction, even if it is incorrect. Consequently, the study indicates that an explanation method could be seen as a new actor which is able to persuade and interact with the humans and cause a change in the results of the classification of a text.

Place, publisher, year, edition, pages
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft, 2018
National Category
Computer and Information Sciences
Identifiers
urn:nbn:se:hj:diva-49118 (URN)10.5445/KSP/1000087327/15 (DOI)
Available from: 2020-06-10 Created: 2020-06-10 Last updated: 2023-11-08Bibliographically approved
2. A meta survey of quality evaluation criteria in explanation methods
Open this publication in new window or tab >>A meta survey of quality evaluation criteria in explanation methods
2022 (English)In: Intelligent Information Systems: CAiSE Forum 2022, Leuven, Belgium, June 6–10, 2022, Proceedings / [ed] J. De Weerdt, Jochen & A. Polyvyanyy, Cham: Springer, 2022, p. 55-63Conference paper, Published paper (Refereed)
Abstract [en]

The evaluation of explanation methods has become a significant issue in explainable artificial intelligence (XAI) due to the recent surge of opaque AI models in decision support systems (DSS). Explanations are essential for bias detection and control of uncertainty since most accurate AI models are opaque with low transparency and comprehensibility. There are numerous criteria to choose from when evaluating explanation method quality. However, since existing criteria focus on evaluating single explanation methods, it is not obvious how to compare the quality of different methods.

Place, publisher, year, edition, pages
Cham: Springer, 2022
Series
Lecture Notes in Business Information Processing, ISSN 1865-1348, E-ISSN 1865-1356 ; 452
Keywords
Explanation method, Evaluation metric, Explainable artificial intelligence, Evaluation of explainability, Comparative evaluations
National Category
Computer Sciences
Identifiers
urn:nbn:se:hj:diva-57114 (URN)10.1007/978-3-031-07481-3_7 (DOI)978-3-031-07480-6 (ISBN)978-3-031-07481-3 (ISBN)
Conference
CAiSE Forum 2022, Leuven, Belgium, June 6–10, 2022
Funder
Knowledge Foundation
Available from: 2022-06-13 Created: 2022-06-13 Last updated: 2023-11-08Bibliographically approved
3. On the definition of appropriate trust: and the tools that come with it
Open this publication in new window or tab >>On the definition of appropriate trust: and the tools that come with it
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Evaluating the efficiency of human-AI interactions is challenging, including subjective and objective quality aspects. With the focus on the human experience of the explanations, evaluations of explanation methods have become mostly subjective, making comparative evaluations almost impossible and highly linked to the individual user. However, it is commonly agreed that one aspect of explanation quality is how effectively the user can detect if the predictions are trustworthy and correct, i.e., if the explanations can increase the user’s appropriate trust in the model. This paper starts with the definitions of appropriate trust from the literature. It compares the definitions with model performance evaluation, showing the strong similarities between appropriate trust and model performance evaluation. The paper’s main contribution is a novel approach to evaluating appropriate trust by taking advantage of the likenesses between definitions. The paper offers several straightforward evaluation methods for different aspects of user performance, including suggesting a method for measuring uncertainty and appropriate trust in regression.

Keywords
Appropriate Trust, Calibrated Trust, Metrics, Explanation Methods, XAI, Evaluation of Explanations, Comparative Evaluations
National Category
Information Systems
Identifiers
urn:nbn:se:hj:diva-62863 (URN)
Note

Included in doctoral thesis in manuscript form.

Available from: 2023-11-08 Created: 2023-11-08 Last updated: 2023-11-08
4. Investigating the impact of calibration on the quality of explanations
Open this publication in new window or tab >>Investigating the impact of calibration on the quality of explanations
2023 (English)In: Annals of Mathematics and Artificial Intelligence, ISSN 1012-2443, E-ISSN 1573-7470Article in journal (Refereed) Epub ahead of print
Abstract [en]

Predictive models used in Decision Support Systems (DSS) are often requested to explain the reasoning to users. Explanations of instances consist of two parts; the predicted label with an associated certainty and a set of weights, one per feature, describing how each feature contributes to the prediction for the particular instance. In techniques like Local Interpretable Model-agnostic Explanations (LIME), the probability estimate from the underlying model is used as a measurement of certainty; consequently, the feature weights represent how each feature contributes to the probability estimate. It is, however, well-known that probability estimates from classifiers are often poorly calibrated, i.e., the probability estimates do not correspond to the actual probabilities of being correct. With this in mind, explanations from techniques like LIME risk becoming misleading since the feature weights will only describe how each feature contributes to the possibly inaccurate probability estimate. This paper investigates the impact of calibrating predictive models before applying LIME. The study includes 25 benchmark data sets, using Random forest and Extreme Gradient Boosting (xGBoost) as learners and Venn-Abers and Platt scaling as calibration methods. Results from the study show that explanations of better calibrated models are themselves better calibrated, with ECE and log loss for the explanations after calibration becoming more conformed to the model ECE and log loss. The conclusion is that calibration makes the models and the explanations better by accurately representing reality.

Place, publisher, year, edition, pages
Springer, 2023
Keywords
Calibration, Decision support systems, Explainable artificial intelligence, Predicting with confidence, Uncertainty in explanations, Venn Abers
National Category
Computer and Information Sciences
Identifiers
urn:nbn:se:hj:diva-60033 (URN)10.1007/s10472-023-09837-2 (DOI)000948763400001 ()2-s2.0-85149810932 (Scopus ID)HOA;;870772 (Local ID)HOA;;870772 (Archive number)HOA;;870772 (OAI)
Funder
Knowledge Foundation
Available from: 2023-03-27 Created: 2023-03-27 Last updated: 2023-11-08
5. Calibrated explanations: With uncertainty information and counterfactuals
Open this publication in new window or tab >>Calibrated explanations: With uncertainty information and counterfactuals
2024 (English)In: Expert systems with applications, ISSN 0957-4174, E-ISSN 1873-6793, Vol. 246, article id 123154Article in journal (Refereed) Published
Abstract [en]

While local explanations for AI models can offer insights into individual predictions, such as feature importance, they are plagued by issues like instability. The unreliability of feature weights, often skewed due to poorly calibrated ML models, deepens these challenges. Moreover, the critical aspect of feature importance uncertainty remains mostly unaddressed in Explainable AI (XAI). The novel feature importance explanation method presented in this paper, called Calibrated Explanations (CE), is designed to tackle these issues head-on. Built on the foundation of Venn-Abers, CE not only calibrates the underlying model but also delivers reliable feature importance explanations with an exact definition of the feature weights. CE goes beyond conventional solutions by addressing output uncertainty. It accomplishes this by providing uncertainty quantification for both feature weights and the model’s probability estimates. Additionally, CE is model-agnostic, featuring easily comprehensible conditional rules and the ability to generate counterfactual explanations with embedded uncertainty quantification. Results from an evaluation with 25 benchmark datasets underscore the efficacy of CE, making it stand as a fast, reliable, stable, and robust solution.

Place, publisher, year, edition, pages
Elsevier, 2024
Keywords
Explainable AI, Feature Importance, Calibrated Explanations, Venn-Abers, Uncertainty Quantification, Counterfactual Explanations
National Category
Information Systems
Identifiers
urn:nbn:se:hj:diva-62864 (URN)10.1016/j.eswa.2024.123154 (DOI)001164089000001 ()2-s2.0-85182588063 (Scopus ID)HOA;;1810433 (Local ID)HOA;;1810433 (Archive number)HOA;;1810433 (OAI)
Funder
Knowledge Foundation, 20160035
Note

Included in doctoral thesis in manuscript form.

Available from: 2023-11-08 Created: 2023-11-08 Last updated: 2024-03-01Bibliographically approved

Open Access in DiVA

Kappa(4387 kB)529 downloads
File information
File name FULLTEXT01.pdfFile size 4387 kBChecksum SHA-512
a19e72154ebf280b3ec89abf383995b5b3202d00d92dd6f58024cc52b30a117dcc58224ce1439b5624698720294562a2288aa92d317f2c08270bd4ac2fca601e
Type fulltextMimetype application/pdf

Authority records

Löfström, Helena

Search in DiVA

By author/editor
Löfström, Helena
By organisation
JIBS, Informatics
Information Systems, Social aspectsComputer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 529 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 3115 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf