Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Conformal Predictive Distribution Trees
Jönköping University, School of Engineering, JTH, Department of Computing, Jönköping AI Lab (JAIL).ORCID iD: 0000-0003-0412-6199
Jönköping University, School of Engineering, JTH, Department of Computing, Jönköping AI Lab (JAIL).ORCID iD: 0000-0003-0274-9026
School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden.
2023 (English)In: Annals of Mathematics and Artificial Intelligence, ISSN 1012-2443, E-ISSN 1573-7470Article in journal (Refereed) Epub ahead of print
Abstract [en]

Being able to understand the logic behind predictions or recommendations on the instance level is at the heart of trustworthy machine learning models. Inherently interpretable models make this possible by allowing inspection and analysis of the model itself, thus exhibiting the logic behind each prediction, while providing an opportunity to gain insights about the underlying domain. Another important criterion for trustworthiness is the model’s ability to somehow communicate a measure of confidence in every specific prediction or recommendation. Indeed, the overall goal of this paper is to produce highly informative models that combine interpretability and algorithmic confidence. For this purpose, we introduce conformal predictive distribution trees, which is a novel form of regression trees where each leaf contains a conformal predictive distribution. Using this representation language, the proposed approach allows very versatile analyses of individual leaves in the regression trees. Specifically, depending on the chosen level of detail, the leaves, in addition to the normal point predictions, can provide either cumulative distributions or prediction intervals that are guaranteed to be well-calibrated. In the empirical evaluation, the suggested conformal predictive distribution trees are compared to the well-established conformal regressors, thus demonstrating the benefits of the enhanced representation.

Place, publisher, year, edition, pages
Springer, 2023.
Keywords [en]
Conformal predictive distributions, Conformal regression, Interpretability, Regression trees
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:hj:diva-61037DOI: 10.1007/s10472-023-09847-0ISI: 000999966600001Scopus ID: 2-s2.0-85160848450Local ID: HOA;;884987OAI: oai:DiVA.org:hj-61037DiVA, id: diva2:1765963
Funder
Knowledge Foundation, 20200223Available from: 2023-06-12 Created: 2023-06-12 Last updated: 2023-06-16

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Johansson, UlfLöfström, Tuwe

Search in DiVA

By author/editor
Johansson, UlfLöfström, Tuwe
By organisation
Jönköping AI Lab (JAIL)
In the same journal
Annals of Mathematics and Artificial Intelligence
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 223 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf