Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Strengthening mechanisms and wear behavior of electrodeposited Ni–SiC nanocomposite coatings
Jönköping University, School of Engineering, JTH, Materials and Manufacturing.ORCID iD: 0000-0001-7228-1188
Jönköping University, School of Engineering, JTH, Materials and Manufacturing.ORCID iD: 0000-0002-7527-719X
Jönköping University, School of Engineering, JTH, Materials and Manufacturing. Department of Industrial Engineering, University of Trento, Trento, Italy.ORCID iD: 0000-0003-2924-137X
2022 (English)In: Journal of Materials Science, ISSN 0022-2461, E-ISSN 1573-4803, Vol. 57, no 35, p. 16632-16648Article in journal (Refereed) Published
Abstract [en]

The present paper describes the study of the synergism between the matrix microstructure and reinforcement phase in electrodeposited nanocomposite coatings. Adding hard nanoparticles into the metallic matrix leads to hardening of the coating. The effects of particle load, size and dispersion on hardening as well as their influence on metal microstructure refinement were studied. The relative contributions of strengthening factors in Ni/nano-SiC composites, namely, Hall–Petch strengthening, Orowan strengthening, enhanced dislocation density and particles incorporation, were evaluated. The production of various coatings under different stirring conditions and powders resulted in dissimilarities in the incorporation of particles. The Hall–Petch relationship for pure nickel was determined using samples produced under different current densities. Additionally, the grain refinement resulting from the particle codeposition and agitation mode were identified as influential factors in grain-size strengthening. Dislocation density strengthening was significant in electrodeposits produced using ultrasonic agitation, while it was negligible in layers produced under other conditions. Particles codeposition affected the magnitude of Orowan strengthening, resulting in cases where strengthening was negligible despite the presence of particles. The sum of contributions and the modified Clyne methods were used to calculate the hardness of the composites based on the contribution of each strengthening factor, and the calculation results were in good agreement with experimental data. The wear behavior of the composites was analyzed by pin-on-disk measurements, and the results correlated with the strengthening mechanisms. Particle size, dispersion and content increased the strengthening effects as well as the hardness and wear resistance of the coatings.

Place, publisher, year, edition, pages
Elsevier, 2022. Vol. 57, no 35, p. 16632-16648
National Category
Metallurgy and Metallic Materials
Identifiers
URN: urn:nbn:se:hj:diva-52334DOI: 10.1007/s10853-022-07655-1ISI: 000852259400003Scopus ID: 2-s2.0-85137600367Local ID: HOA;;1548027OAI: oai:DiVA.org:hj-52334DiVA, id: diva2:1548027
Funder
Knowledge Foundation, 20310117
Note

Included in doctoral thesis in manuscript form with the title "Strengthening mechanisms by particles codeposition and wear behaviour of electroplated Ni-SiC coatings".

Available from: 2021-04-28 Created: 2021-04-28 Last updated: 2022-09-22Bibliographically approved
In thesis
1. Control of particles codeposition and strengthening mechanisms in nickel based nanocomposite coatings
Open this publication in new window or tab >>Control of particles codeposition and strengthening mechanisms in nickel based nanocomposite coatings
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Surface durability is a key factor in the service life of components. Depending on the aggressiveness of the environment, surface deterioration by wear or corrosion leads to failure of the bulk material and eventually to the loss of functionality of the component. Therefore, designing surfaces to withstand service requirements is a critical aspect for industrial product realisation.

Electroplating is an attractive technique to mass-produce affordable protective coatings due to its low cost and high performance, easy maintenance of the process, and adjustable production times. Producing nanocomposite coatings by electroplating has received significant attention for decades due to their potential to provide excellent wear and corrosion protection.

Nanocomposites provide the possibility of combining different materials to achieve multifunctionality and, due to the nanometer size of the reinforcer phase, promote additional strengthening effects in the matrix not present in microcomposites. Additionally, the reduction in the size of the reinforcer provides advantages in wear protection as the risk of third-body abrasion is reduced. However, the industrial applicability remains limited due to the lack of control in their production process.

The present work focuses on the relationship between the input parameters and the codeposition of SiC, MoS2 and graphite particles, identifying critical factors and providing methods to control the process better. Furthermore, a correlation between the nickel matrix microstructure and codeposition is established, linking them to the strengthening effects and final performance of the nanocomposite coating.

New methods were developed to provide a reproducible electroplating process. A surface treatment for the reinforcing powder minimised the differences between the particles surface state deriving from different batches, supplier or production routes. Composites produced with surface-treated nanoparticles showed reproducible results displaying similar codeposition rate andhardness values. Additionally, a pulse-reverse plating waveform, adapted to the SiC particles average size, was designed and optimised to deposit a reproducible and improved particles content even in the presence of anionic surfactants, typically used to reduce coatings porosity and defects.

The study of the impact of the reinforcer phase on the electrocrystallisation of the nickel matrix showed that the microstructure was significantly affected by the size, chemistry and dispersion of the particles, promoting changes in the preferred crystal orientation, grains morphology and size. The strengthening mechanisms were linked to the microstructural changes resulting from the process parameters, particles codeposition and the agitation mode. Different models were used to predict the hardness of the composites based on the contribution and combination of each strengthening factor: Hall-Petch, Orowan, enhanced dislocation density and particles incorporation, showing a good agreement with the experimental data.

Furthermore, the wear behaviour of the composites was analysed and connected to the hardening effects. The analysis highlighted how particles content, dispersion, type and size of the reinforcer contribute to the protection against wear.

A novel multifunctional composite coating based on a dual dispersion mix of hard SiC particles and self-lubricant MoS2 particles was designed, resulting in a surface with high hardness, low friction and low wear.

Abstract [sv]

Ytors robusthet är en nyckelfaktor för komponenters livslängd. I krävande applikationsmiljöer kan ytan skadas av korrosion eller nötning som fortplantar sig till basmaterialet vilket kan leda till att komponenten förlorar sin funktionalitet. Det är därför viktigt att under produktutveckling konstruera komponentytor som motstår tilltänkta driftsmiljöer.

Elektroplätering är en attraktiv metod for kostnadseffektiv volymtillverkning av skyddande funktionella beläggningar då processen är flexibel och enkel att underhålla. Därför har också möjligheten att elektroplätera nano-kompositbeläggningar med utmärkta nötnings- och korrosionsegenskaper uppmärksammats de senaste decennierna.

Nano-kompositer öppnar för möjligheten att kombinera olika material för att uppnå multifunktionalitet. Nano-partiklarna bidrar med en härdningseffekt utöver vad som kan uppnås med mikro-partiklar. Ytterligare är risken för nötningsskadar på grund av lösrivna partiklar mindre för nano-kompositer. Dock är den industriella användningen begränsat av att tillverkningsprocessen är svår att kontrollera.

Denna avhandling fokuserar på förhållandet mellan ingångsparametrar och inkorporering av SiC-, MoS2- och grafitpartiklar genom att identifiera kritiska faktorer och tillhandahåller metoder för bättre processkontroll. Dessutom har ett samband mellan nickelmatrisens mikrostruktur och inkorporerade partiklar identifierats som förklarar härdningseffekten och kompositbeläggningens egenskaper.

Nya metoder för att skapa en reproducerbar pläteringsprocess har utvecklats. En förberedande ytbehandling av partiklarna minskar skillnader i ytkemiska egenskaper härstammande från olika leveranser, producenter och tillverkningsmetoder. Kompositbeläggningar tillverkade med ytbehandlade partiklar var reproducerbara med avsikt på partikelhalt och hårdhet. Ytterligare designades en bipolär strömpuls anpassad efter SiC-partiklarnasgenomsnittliga storlek så att en reproducerbar ökad partikelmängd kan inkorporeras. Detta gäller även i närvaro av anjoniska ytaktiva medel, som vanligtvis används för att minska beläggningens porositet och defekter.

Studien av partiklarnas påverkan på elektrokristallisationen av nickelmatrisen visade att partiklarnas storlek, sammansättning och spridning hade en avsevärd effekt på mikrostrukturen. Partiklarna påverkade den föredragna kristallorienteringen samt kornens form och storlek. Härdningsegenskaperna kopplades till förändringar i mikrostrukturen beroende på processparametrar, partikelinkorporering och omrörningsläget. Olika modeller användes för att förutsäga kompositernas hårdhet baserat på bidrag från följande härdningsfaktor: Hall-Petch, Orowan, ökad dislokationstäthet och partikelinkorporering, vilka visade god överensstämmelse med experimentella data.

Slutligen undersöktes kompositbeläggningarnas nötningsegenskaper och kopplades till partikelhärdning. Särskild vikt lades på hur partikelhalten, -spridningen, -typen och -storleken bidrar till skyddet mot slitage.

En ny multifunktionell komposit baserad på en dubbel dispersionsblandning av hårda SiC-partiklar och självsmörjande MoS2-partiklar utvecklades och resulterade i en yta med hög hårdhet, låg friktion och lågt slitage.

Place, publisher, year, edition, pages
Jönköping: Jönköping University, School of Engineering, 2021. p. 110
Series
JTH Dissertation Series ; 063
Keywords
Dispersion coatings; nanocomposite; Controlled particles codeposition; Surface treatment; ζ-potentials; Pulse-reverse deposition; Ultrasound agitation; Electrocrystallisation; Microstructure; Strengthening mechanisms; Hardness; Wear, Dispersionsbeläggning; nanokomposit; kontrollerad inkorporering av partiklar; ytbehandling; zeta-potential; bipolär pulsplätering; ultraljudsomrörning; elektrokristallisation; mikrostruktur; härdningsmekanism; hårdhet; nötning
National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:hj:diva-52335 (URN)978-91-87289-67-5 (ISBN)
Public defence
2021-05-31, Gjuterisalen (E1405), School of Engineering, Jönköping, 13:30 (Swedish)
Opponent
Supervisors
Funder
Knowledge Foundation, 20310117
Available from: 2021-04-28 Created: 2021-04-28 Last updated: 2021-09-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Pinate, SantiagoGhassemali, EhsanZanella, Caterina

Search in DiVA

By author/editor
Pinate, SantiagoGhassemali, EhsanZanella, Caterina
By organisation
JTH, Materials and Manufacturing
In the same journal
Journal of Materials Science
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 231 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf