Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Role of anodic time in pulse-reverse electrocodeposition of nano-SiC particles
Jönköping University, School of Engineering, JTH, Materials and Manufacturing.ORCID iD: 0000-0001-7228-1188
University of Mons, Mons, Walloon Region, Belgium.
Jönköping University, School of Engineering, JTH, Materials and Manufacturing.ORCID iD: 0000-0003-2924-137X
2021 (English)In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 168, no 6, article id 062509Article in journal (Refereed) Published
Abstract [en]

This work focuses on the significance of the particle's residence time in composite electrodeposition. Ni-SiC were produced using different pulse-reverse (PR) waveforms based on the average particle diameter (60 nm). The waveform was designed to deposit a metal thickness equivalent to the average diameter during the cathodic pulse and strip half during the anodic pulse. The shape of the waveform was modified to study its effect on particle codeposition by changing the cathodic and anodic pulse current density peaks and cycle time while maintaining the same charge. For benchmark, samples were also produced under direct current (DC), matching the cathodic pulse current density peaks and average. The electrodeposition was done in an additive-free and SDS-Watts bath. ζ-potential measurements were employed to determine the interaction between particles and electrolyte. A relation was established between particle incorporation rate and residence time at the electrode interface, examining. The microhardness of the deposits was also studied. The SiC content was more than doubled by PR compared to DC, from 2 vol.% to 5.5 vol.% even after SDS addition. The increase in codeposition rate was related to the anodic pulse time, supported by the existing models on the mechanisms of particle codeposition.

Place, publisher, year, edition, pages
Institute of Physics (IOP), 2021. Vol. 168, no 6, article id 062509
Keywords [en]
Pulse reverse current, Nanocomposite coatings, Surfactant, ζ-potential, Residence time
National Category
Metallurgy and Metallic Materials
Identifiers
URN: urn:nbn:se:hj:diva-52331DOI: 10.1149/1945-7111/ac0a27ISI: 000663498300001Scopus ID: 2-s2.0-85109073165Local ID: PPembargo0;intsam;1548023OAI: oai:DiVA.org:hj-52331DiVA, id: diva2:1548023
Funder
Knowledge Foundation, 20310117
Note

Included in thesis in manuscript form.

Available from: 2021-04-28 Created: 2021-04-28 Last updated: 2021-07-15Bibliographically approved
In thesis
1. Control of particles codeposition and strengthening mechanisms in nickel based nanocomposite coatings
Open this publication in new window or tab >>Control of particles codeposition and strengthening mechanisms in nickel based nanocomposite coatings
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Surface durability is a key factor in the service life of components. Depending on the aggressiveness of the environment, surface deterioration by wear or corrosion leads to failure of the bulk material and eventually to the loss of functionality of the component. Therefore, designing surfaces to withstand service requirements is a critical aspect for industrial product realisation.

Electroplating is an attractive technique to mass-produce affordable protective coatings due to its low cost and high performance, easy maintenance of the process, and adjustable production times. Producing nanocomposite coatings by electroplating has received significant attention for decades due to their potential to provide excellent wear and corrosion protection.

Nanocomposites provide the possibility of combining different materials to achieve multifunctionality and, due to the nanometer size of the reinforcer phase, promote additional strengthening effects in the matrix not present in microcomposites. Additionally, the reduction in the size of the reinforcer provides advantages in wear protection as the risk of third-body abrasion is reduced. However, the industrial applicability remains limited due to the lack of control in their production process.

The present work focuses on the relationship between the input parameters and the codeposition of SiC, MoS2 and graphite particles, identifying critical factors and providing methods to control the process better. Furthermore, a correlation between the nickel matrix microstructure and codeposition is established, linking them to the strengthening effects and final performance of the nanocomposite coating.

New methods were developed to provide a reproducible electroplating process. A surface treatment for the reinforcing powder minimised the differences between the particles surface state deriving from different batches, supplier or production routes. Composites produced with surface-treated nanoparticles showed reproducible results displaying similar codeposition rate andhardness values. Additionally, a pulse-reverse plating waveform, adapted to the SiC particles average size, was designed and optimised to deposit a reproducible and improved particles content even in the presence of anionic surfactants, typically used to reduce coatings porosity and defects.

The study of the impact of the reinforcer phase on the electrocrystallisation of the nickel matrix showed that the microstructure was significantly affected by the size, chemistry and dispersion of the particles, promoting changes in the preferred crystal orientation, grains morphology and size. The strengthening mechanisms were linked to the microstructural changes resulting from the process parameters, particles codeposition and the agitation mode. Different models were used to predict the hardness of the composites based on the contribution and combination of each strengthening factor: Hall-Petch, Orowan, enhanced dislocation density and particles incorporation, showing a good agreement with the experimental data.

Furthermore, the wear behaviour of the composites was analysed and connected to the hardening effects. The analysis highlighted how particles content, dispersion, type and size of the reinforcer contribute to the protection against wear.

A novel multifunctional composite coating based on a dual dispersion mix of hard SiC particles and self-lubricant MoS2 particles was designed, resulting in a surface with high hardness, low friction and low wear.

Abstract [sv]

Ytors robusthet är en nyckelfaktor för komponenters livslängd. I krävande applikationsmiljöer kan ytan skadas av korrosion eller nötning som fortplantar sig till basmaterialet vilket kan leda till att komponenten förlorar sin funktionalitet. Det är därför viktigt att under produktutveckling konstruera komponentytor som motstår tilltänkta driftsmiljöer.

Elektroplätering är en attraktiv metod for kostnadseffektiv volymtillverkning av skyddande funktionella beläggningar då processen är flexibel och enkel att underhålla. Därför har också möjligheten att elektroplätera nano-kompositbeläggningar med utmärkta nötnings- och korrosionsegenskaper uppmärksammats de senaste decennierna.

Nano-kompositer öppnar för möjligheten att kombinera olika material för att uppnå multifunktionalitet. Nano-partiklarna bidrar med en härdningseffekt utöver vad som kan uppnås med mikro-partiklar. Ytterligare är risken för nötningsskadar på grund av lösrivna partiklar mindre för nano-kompositer. Dock är den industriella användningen begränsat av att tillverkningsprocessen är svår att kontrollera.

Denna avhandling fokuserar på förhållandet mellan ingångsparametrar och inkorporering av SiC-, MoS2- och grafitpartiklar genom att identifiera kritiska faktorer och tillhandahåller metoder för bättre processkontroll. Dessutom har ett samband mellan nickelmatrisens mikrostruktur och inkorporerade partiklar identifierats som förklarar härdningseffekten och kompositbeläggningens egenskaper.

Nya metoder för att skapa en reproducerbar pläteringsprocess har utvecklats. En förberedande ytbehandling av partiklarna minskar skillnader i ytkemiska egenskaper härstammande från olika leveranser, producenter och tillverkningsmetoder. Kompositbeläggningar tillverkade med ytbehandlade partiklar var reproducerbara med avsikt på partikelhalt och hårdhet. Ytterligare designades en bipolär strömpuls anpassad efter SiC-partiklarnasgenomsnittliga storlek så att en reproducerbar ökad partikelmängd kan inkorporeras. Detta gäller även i närvaro av anjoniska ytaktiva medel, som vanligtvis används för att minska beläggningens porositet och defekter.

Studien av partiklarnas påverkan på elektrokristallisationen av nickelmatrisen visade att partiklarnas storlek, sammansättning och spridning hade en avsevärd effekt på mikrostrukturen. Partiklarna påverkade den föredragna kristallorienteringen samt kornens form och storlek. Härdningsegenskaperna kopplades till förändringar i mikrostrukturen beroende på processparametrar, partikelinkorporering och omrörningsläget. Olika modeller användes för att förutsäga kompositernas hårdhet baserat på bidrag från följande härdningsfaktor: Hall-Petch, Orowan, ökad dislokationstäthet och partikelinkorporering, vilka visade god överensstämmelse med experimentella data.

Slutligen undersöktes kompositbeläggningarnas nötningsegenskaper och kopplades till partikelhärdning. Särskild vikt lades på hur partikelhalten, -spridningen, -typen och -storleken bidrar till skyddet mot slitage.

En ny multifunktionell komposit baserad på en dubbel dispersionsblandning av hårda SiC-partiklar och självsmörjande MoS2-partiklar utvecklades och resulterade i en yta med hög hårdhet, låg friktion och lågt slitage.

Place, publisher, year, edition, pages
Jönköping: Jönköping University, School of Engineering, 2021. p. 110
Series
JTH Dissertation Series ; 063
Keywords
Dispersion coatings; nanocomposite; Controlled particles codeposition; Surface treatment; ζ-potentials; Pulse-reverse deposition; Ultrasound agitation; Electrocrystallisation; Microstructure; Strengthening mechanisms; Hardness; Wear, Dispersionsbeläggning; nanokomposit; kontrollerad inkorporering av partiklar; ytbehandling; zeta-potential; bipolär pulsplätering; ultraljudsomrörning; elektrokristallisation; mikrostruktur; härdningsmekanism; hårdhet; nötning
National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:hj:diva-52335 (URN)978-91-87289-67-5 (ISBN)
Public defence
2021-05-31, Gjuterisalen (E1405), School of Engineering, Jönköping, 13:30 (Swedish)
Opponent
Supervisors
Funder
Knowledge Foundation, 20310117
Available from: 2021-04-28 Created: 2021-04-28 Last updated: 2021-09-10Bibliographically approved

Open Access in DiVA

Full-text(1096 kB)252 downloads
File information
File name FULLTEXT01.pdfFile size 1096 kBChecksum SHA-512
2e3560a5b7bf319473ba315e6c1a9f273b675a5e4bf63c9bcd31df1de3957e402ae203254d9a52172f589a0b68b672277a1f36f2b9c619f1d17874afedfc0bcd
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Pinate, SantiagoZanella, Caterina

Search in DiVA

By author/editor
Pinate, SantiagoZanella, Caterina
By organisation
JTH, Materials and Manufacturing
In the same journal
Journal of the Electrochemical Society
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar
Total: 252 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 434 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf