Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Applications of common principal components in multivariate and high-dimensional analysis
Jönköping University, Jönköping International Business School, JIBS, Statistics.
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis consists of four papers, all exploring some aspect of common principal component analysis (CPCA), the generalization of PCA to multiple groups. The basic assumption of the CPC model is that the space spanned by the eigenvectors is identical across several groups, whereas eigenvalues associated with the eigenvectors can vary. CPCA is used in essentially the same areas and applications as PCA.

The first paper compares the performance of the maximum likelihood and Krzanowski’s estimators of the CPC model for two real-world datasets and in a Monte Carlo simulation study. The simplicity and intuition of Krzanowski's estimator and the findings in this paper support and promote the use of this estimator for CPC models over the maximum likelihood estimator.

Paper number two uses CPCA as a tool for imposing restrictions on system-wise regression models. The paper contributes to the field by proposing a variety of explicit estimators, deriving their properties and identifying the appropriate amount of smoothing that should be imposed on the estimator. 

In the third paper, a generalization of the fixed effects PCA model to multiple populations in a CPC environment is proposed. The model includes mainly geometrical, rather than probabilistic, assumptions, and is designed to account for any possible prior information about the noise in the data to yield better estimates, obtained by minimizing a least squares criterion with respect to a specified metric.

The fourth paper survey some properties of the orthogonal group and the associated Haar measure on it. It is demonstrated how seemingly abstract results contribute to applied statistics and, in particular, to PCA.

Abstract [sv]

Denna avhandling består av fyra papper som alla utforskar någon del av gemensam principalkomponentanalys (CPCA), generaliseringen av principal-komponentanalys (PCA) till flera grupper. Det grundläggande antagandet av CPC-modellen är att egenvektorerna är identiska för samtliga grupper medan de associerade egenvärdena kan variera.

Det första pappret jämför prestationen av maximum likelihood estimatorn och Krzanowskis estimator för CPC-modellen för två verkliga dataset och i en Monte Carlo-simuleringstudie. Enkelheten och intuitionen av Krzanowskis estimator samt resultaten i detta papper stödjer användningen av denna estimator för CPC-modeller över maximum likelihood-estimatorn.

Papper nummer två använder CPCA som ett verktyg för att införa restriktioner på systemvisa regressionsmodeller. Pappret bidrar till området genom att föreslå en rad olika estimatorer, härleda deras egenskaper och identifiera lämplig mängd utjämning som ska åläggas estimatorn.

I det tredje pappret föreslås en generalisering av PCA-modellen med icke-stokastiska effekter till flera populationer i en CPC-miljö. Modellen innehåller huvudsakligen geometriska, snarare än probabilistiska antaganden och är utformad för att betrakta eventuell information om bruset i dataseten för att ge bättre uppskattningar; erhållna genom att minimera ett minsta kvadratkriterium med avseende på ett specificerat metriskt rum.

Det fjärde pappret undersöker egenskaper hos den ortogonala gruppen och det associerade Haar-måttet på gruppen. Det demonstreras hur till synes abstrakta resultat är viktiga för tillämpad statistik och i synnerhet för PCA.

Place, publisher, year, edition, pages
Jönköping: Jönköping University, Jönköping International Business School , 2019. , p. 56
Series
JIBS Dissertation Series, ISSN 1403-0470 ; 131
National Category
Probability Theory and Statistics
Identifiers
URN: urn:nbn:se:hj:diva-43519ISBN: 978-91-86345-93-8 (print)OAI: oai:DiVA.org:hj-43519DiVA, id: diva2:1306436
Public defence
2019-05-17, B1014, Jönköping International Business School, Jönköping, 10:00 (English)
Opponent
Supervisors
Available from: 2019-04-23 Created: 2019-04-23 Last updated: 2019-04-23Bibliographically approved
List of papers
1. A comparison of two estimation methods for common principal components
Open this publication in new window or tab >>A comparison of two estimation methods for common principal components
2019 (English)In: Communications in statistics. Case studies, data analysis and applications, E-ISSN 2373-7484, Vol. 5, no 4, p. 366-393Article in journal (Refereed) Published
Abstract [en]

Common principal components (CPCs) are often estimated using maximum likelihood estimation through an algorithm called the Flury–Gautschi (FG) Algorithm. Krzanowski proposed a simpler estimation method via a principal component analysis of a weighted sum of the sample covariance matrices. These methods are compared for real-world datasets and in a Monte Carlo simulation. The real-world data is used to compare the selection of a common eigenvector model and the estimated coefficients. The simulation study investigates how the accuracy of the methods is affected by autocorrelation, the number of covariance matrices, dimensions, and sample sizes for multivariate normal and chi-square distributed data. The findings in this article support the use of Krzanowski’s method in situations where the CPC assumption is appropriate. 

Place, publisher, year, edition, pages
Taylor & Francis, 2019
Keywords
Common principal components, identification of common eigenvector models, maximum likelihood estimation, Monte Carlo simulation
National Category
Probability Theory and Statistics
Identifiers
urn:nbn:se:hj:diva-38578 (URN)10.1080/23737484.2019.1656117 (DOI)2-s2.0-85080129292 (Scopus ID)HOA;;1174952 (Local ID)HOA;;1174952 (Archive number)HOA;;1174952 (OAI)
Available from: 2018-01-17 Created: 2018-01-17 Last updated: 2021-02-26Bibliographically approved
2. Common principal components with applications in regression
Open this publication in new window or tab >>Common principal components with applications in regression
(English)Manuscript (preprint) (Other academic)
National Category
Probability Theory and Statistics
Identifiers
urn:nbn:se:hj:diva-38586 (URN)
Available from: 2018-01-17 Created: 2018-01-17 Last updated: 2019-04-23
3. An extension of the fixed effects principal component model to a common principal component environment
Open this publication in new window or tab >>An extension of the fixed effects principal component model to a common principal component environment
(English)Manuscript (preprint) (Other academic)
National Category
Probability Theory and Statistics
Identifiers
urn:nbn:se:hj:diva-43517 (URN)
Available from: 2019-04-23 Created: 2019-04-23 Last updated: 2019-04-23
4. A small excursion on the Haar measure on Op
Open this publication in new window or tab >>A small excursion on the Haar measure on Op
(English)Manuscript (preprint) (Other academic)
National Category
Probability Theory and Statistics
Identifiers
urn:nbn:se:hj:diva-38584 (URN)
Available from: 2018-01-17 Created: 2018-01-17 Last updated: 2019-04-23

Open Access in DiVA

Kappa(1225 kB)3241 downloads
File information
File name FULLTEXT01.pdfFile size 1225 kBChecksum SHA-512
715bdc61e6f52aa3949e062e10be98b481e1e5e70a6631847ca8aedc69b6ea4a8e5b6a72d98dc59afe4425277a2d687b32ee26999c2e2cd87c8328a470949590
Type fulltextMimetype application/pdf

Authority records

Duras, Toni

Search in DiVA

By author/editor
Duras, Toni
By organisation
JIBS, Statistics
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar
Total: 3242 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1424 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf