Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Visual Analytics for the Detection of Anomalous Maritime Behavior
Högskolan i Skövde, Institutionen för kommunikation och information.ORCID iD: 0000-0003-2900-9335
Högskolan i Skövde, Forskningscentrum för Informationsteknologi.ORCID iD: 0000-0001-8884-2154
Högskolan i Skövde, Institutionen för kommunikation och information.ORCID iD: 0000-0001-6883-2450
2008 (English)In: Proceedings of 12th International Conference on Information Visualisation IV08 / [ed] Ebad Banissi, Liz Stuart, Mikael Jern, Gennady Andrienko, Francis T. Marchese, Nasrullah Memon, Reda Alhajj, Theodor G. Wyeld, Remo Aslak Burkhard, Georges Grinstein, Dennis Groth, Anna Ursyn, Carsten Maple, Anthony Faiola, and Brock Craft, IEEE Computer Society , 2008, p. 273-279Conference paper, Published paper (Refereed)
Abstract [en]

The surveillance of large sea areas often generates huge amounts of multidimensional data. Exploring, analyzing and finding anomalous behavior within this data is a complex task. Confident decisions upon the abnormality of a particular vessel behavior require a certain level of situation awareness that may be difficult to achieve when the operator is overloaded by the available information. Based on a visual analytics process model, we present a novel system that supports the acquisition of situation awareness and the involvement of the user in the anomaly detection process using two layers of interactive visualizations. The system uses an interactive data mining module that supports the insertion of the user's knowledge and experience in the creation, validation and continuous update of the normal model of the environment.

Place, publisher, year, edition, pages
IEEE Computer Society , 2008. p. 273-279
Keywords [en]
anomaly detection, interaction, visualization, visual analytics, situation awareness, surveillance
National Category
Computer and Information Sciences
Research subject
Technology
Identifiers
URN: urn:nbn:se:hj:diva-43291DOI: 10.1109/IV.2008.25ISI: 000259178400042Scopus ID: 2-s2.0-51749122411Local ID: 0;0;miljJAILISBN: 978-0-7695-3268-4 (print)OAI: oai:DiVA.org:hj-43291DiVA, id: diva2:1293829
Conference
12th International Conference Information Visualisation, IV08; London; United Kingdom; 9 July 2008 through 11 July 2008
Available from: 2010-02-01 Created: 2019-03-05 Last updated: 2019-08-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Riveiro, MariaFalkman, GöranZiemke, Tom

Search in DiVA

By author/editor
Riveiro, MariaFalkman, GöranZiemke, Tom
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf